Skip to main content

Maternal investment in eggs is affected by male feet colour and breeding conditions in the blue-footed booby, Sula nebouxii

Abstract

Females are expected to vary investment in offspring according to variables that may influence the offspring fitness in a way that optimises her inclusive fitness for a particular context. Thus, when sexual ornaments signal the quality of the male, females might invest in reproduction as a function of the attractiveness of their mate. We tested whether breeding conditions and male feet colour influence reproductive decisions of blue-footed booby females. In the blue-footed booby, male feet colour is a dynamic condition-dependent sexually selected trait that is related to paternal effort. During two consecutive years, an El Niño year (poor breeding conditions) and a year with good breeding conditions, we experimentally reduced male attractiveness by modifying their feet colour after the first egg was laid and recorded female investment in the second egg. We found that, relative to the first egg in the clutch, females laid heavier second eggs during the poor year than during the good year. Females paired with males with duller feet colour reduced second-egg mass and volume and delayed the laying of the second egg, independently of the year. Absolute yolk androstenedione (A4) concentration (but not testosterone, T) in second eggs was higher during a poor year than during a good year. Only during a year with poor breeding conditions, females paired with experimental males decreased the relative A4 concentration (but not T) in the second egg compared to control females. Thus, blue-footed booby females probably favour brood reduction by decreasing egg quality and increasing size asymmetry between chicks when the breeding and the mate conditions are poor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Burley N (1986) Sexual selection for aesthetic traits in species with biparental care. Am Nat 127(4):415–445

    Article  Google Scholar 

  • Burley N (1988) The differential allocation hypothesis: an experimental test. Am Nat 132(5):611–628

    Article  Google Scholar 

  • Cariello MO, Macedo RHF, Schwabl HG (2006) Maternal androgens in eggs of communally breeding guira cuckoos (Guira guira). Horm Behav 49:654–662

    Article  PubMed  CAS  Google Scholar 

  • Christians JK (2002) Avian egg size: variation within species and inflexibility within individuals. Biol Rev 77:1–26

    PubMed  Google Scholar 

  • Cunningham EJA, Russell AF (2000) Egg investment is influenced by male attractiveness in the mallard. Nature 404:74–76

    Article  PubMed  CAS  Google Scholar 

  • D’Alba L, Torres R (2007) Seasonal egg mass variation and laying sequence in a bird with facultative brood reduction. Auk 124:643–652

    Article  Google Scholar 

  • Drummond H (2006) Dominance in vertebrate broods and litters. Q Rev Biol 81:3–32

    Article  PubMed  Google Scholar 

  • Drummond H, Gonzalez E, Osorno JL (1986) Parent–offspring cooperation in the blue-footed booby (Sula nebouxii). Behav Ecol Sociobiol 19:365–372

    Article  Google Scholar 

  • Drummond H, Osorno JL, Torres R, Garcia Chavelas C, Merchant Larios H (1991) Sexual size dimorphism and sibling competition: implications for avian sex. Am Nat 138(3):623–641

    Article  Google Scholar 

  • Drummond H, Rodriguez C, Schwabl H (2008) Do mothers regulate facultative and obligate siblicide by differentially provisioning eggs with hormones? J Avian Biol 39:139–143

    Article  Google Scholar 

  • Eising C, Groothuis T (2003) Yolk androgens and begging behaviour in black-headed gull chicks: an experimental field study. Anim Behav 66(6):1027–1034

    Article  Google Scholar 

  • Eising CM, Eikenaar C, Schwabl H, Groothuis TGG (2001) Maternal androgens in black-headed gull (Larus ridibundus) eggs: consequences for chick development. Proc R Soc Lond B 268:839–846

    Article  CAS  Google Scholar 

  • Gasparini J, Boulinier T, Gill VA, Gil D, Hatch SA, Roulin A (2007) Food availability affects the maternal transfer of androgens and antibodies into eggs of a colonial bird seabird. J Evol Biol 20(3):874–880

    Article  PubMed  CAS  Google Scholar 

  • Gil D (2003) Golden eggs: maternal manipulation of offspring phenotype by egg androgen in birds. Ardeola 50(2):281–294

    Google Scholar 

  • Gil D, Graves J, Hazon N, Wells A (1999) Male attractiveness and differential testosterone investment in zebra finch eggs. Science 286:126–128

    Article  PubMed  CAS  Google Scholar 

  • Gil D, Heim C, Bulmer E, Rocha M, Puerta M, Naguib M (2004a) Negative effects of early developmental stress on yolk testosterone levels in a passerine bird. J Exp Biol 207:2215–2220

    Article  PubMed  CAS  Google Scholar 

  • Gil D, Leboucher G, Lacroix A, Cue R, Kreutzer M (2004b) Female canaries produce eggs with greater amounts of testosterone when exposed to preferred male song. Horm Behav 45:64–70

    Article  PubMed  CAS  Google Scholar 

  • Gil D, Biard C, Lacroix A, Spottiswoode CN, Saino N, Puerta M, Møller AP (2007) Evolution of yolk androgens in birds: development, coloniality, and sexual dichromatism. Am Nat 169:802–819

    Article  PubMed  Google Scholar 

  • Groothuis TGG, Müller W, von Engelhardt N, Carere C, Eising C (2005) Maternal hormones as a tool to adjust offspring phenotype in avian species. Neuro Biobehav Rev 29:329–352

    Article  CAS  Google Scholar 

  • Hoyt DF (1979) Practical methods for estimating volume and fresh weight of bird eggs. Auk 96:73–77

    Google Scholar 

  • Lack D (1954) The natural regulation of animal numbers. Oxford University Press, Oxford

    Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS system for mixed models. SAS Institute, Cary

    Google Scholar 

  • Loyau A, Saint Jalme M, Mauget R, Sorci G (2007) Male sexual attractiveness affects the investment of maternal resources into the eggs in peafowl (Pavo cristatus). Behav Ecol Sociobiol 61:1043–1052

    Article  Google Scholar 

  • Marshall RC, Leisler B, Catchpole CK, Schwabl H (2005) Male song quality affects circulating but not yolk steroid concentrations in female canaries (Serinus canaria). J Exp Biol 208:4593–4598

    Article  PubMed  CAS  Google Scholar 

  • Mazuc J, Bonneaud C, Chastel O, Sorci G (2003) Social environment affects female and egg testosterone levels in the house sparrow (Passer domesticus). Ecol Lett 6:1084–1090

    Article  Google Scholar 

  • Mock DW, Parker GA (1997) The evolution of sibling rivalry. Oxford University Press, Oxford

    Google Scholar 

  • Mousseau TA, Fox CW (1998a) The adaptive significance of maternal effects. TREE 13(10):403–407

    Google Scholar 

  • Mousseau TA, Fox CW (1998b) Maternal effects as adaptations. Oxford University Press, Oxford

    Google Scholar 

  • Müller W, Dijkstra C, Groothuis TGG (2003) Inter-sexual differences in T-cell-mediated immunity of black-headed gull chicks (Larus ridibundus) depend on the hatching order. Behav Ecol Sociobiol 55:80–86

    Article  Google Scholar 

  • Müller W, Groothuis TGG, Dijkstra C, Siitari H, Alatalo RV (2004) Maternal antibody transmission and breeding densities in the black-headed gull, Larus ridibundus. Funct Ecol 18:719–724

    Article  Google Scholar 

  • Müller W, Groothuis TGG, Kasprzik A, Dijkstra C, Alatalo RV, Siitari H (2005) Prenatal androgen exposure modulates cellular and humoral immune function of black headed gull chicks. Proc R Soc Lond B 272:1971–1977

    Article  Google Scholar 

  • Navara KJ, Hill GE, Mendonça MT (2005) Variable effects of yolk androgens on growth, survival, and immunity in eastern bluebird nestlings. Physiol Biochem Zool 78:570–578

    Article  PubMed  CAS  Google Scholar 

  • Navara KJ, Hill GE, Mendonça MT (2006) Yolk testosterone stimulates growth and immunity in house finch chicks. Physiol Biochem Zool 79(3):550–555

    Article  PubMed  CAS  Google Scholar 

  • Osorno JL, Drummond H (1995) The function of hatching asynchrony in the blue-footed booby. Behav Ecol Sociobiol 37:265–273

    Article  Google Scholar 

  • Rubolini D, Romano M, Martinelli R, Saino N (2006) Effects of elevated yolk testosterone levels on survival, growth and immunity of male and female yellow-legged gull chicks. Behav Ecol Sociobiol 59(3):344–352

    Article  Google Scholar 

  • Rutstein AN, Gilbert L, Slater PJB, Graves JA (2004) Mate attractiveness and primary resource allocation in the zebra finch. Anim Behav 68(5):1087–1094

    Article  Google Scholar 

  • Saino N, Ferrari RP, Martinelli R, Romano M, Rubolini D, Møller AP (2002a) Early maternal effects mediated by immunity depend on sexual ornamentation of the male partner. Proc R Soc Lond B 269:1005–1009

    Article  Google Scholar 

  • Saino N, Bertacche V, Ferrari RP, Martinelli R, Møller AP, Stradi R (2002b) Carotenoid concentration in barn swallow eggs is influenced by laying order, maternal infection and paternal ornamentation. Proc R Soc Lond B 269:1729–1733

    Article  CAS  Google Scholar 

  • Saino N, Romano M, Ferrari RP, Martinelli R, Møller AP (2003) Maternal antibodies but not carotenoids in barn swallow eggs covary with embryo sex. J Evol Biol 16:516–522

    Article  PubMed  CAS  Google Scholar 

  • Sandell MI, Adkins-Regan E, Ketterson ED (2007) Pre-breeding diet affects the allocation of yolk hormones in zebra finches Taeniopygia guttata. J Avian Biol 38:284–290

    Google Scholar 

  • Schwabl H (1993) Yolk is source of testosterone for developing birds. Proc Natl Acad Sci USA 90:11446–11450

    Article  PubMed  CAS  Google Scholar 

  • Schwabl H (1996) Maternal testosterone in the avian egg enhances post natal growth. Comp Biochem Physiol 114A:271–276

    Article  CAS  Google Scholar 

  • Schwabl H (1997) A hormonal mechanism for parental favouritism. Nature 386:231

    Article  CAS  Google Scholar 

  • Sheldon B (2000) Differential allocation: tests, mechanism and implications. Trends Ecol Evol 15(10):397–402

    Article  PubMed  Google Scholar 

  • Sockman KW, Schwabl H (2000) Yolk androgens reduce offspring survival. Proc R Soc Lond B 267:1451–1456

    Article  CAS  Google Scholar 

  • Sockman KW, Sharp PJ, Schwabl H (2006) Orchestration of avian reproductive effort: an integration of the ultimate and proximate bases for flexibility in clutch size, incubation behaviour, and yolk androgen deposition. Biol Rev 81:629–666

    Article  PubMed  Google Scholar 

  • Tanvez A, Beguin N, Chastel O, Lacroix A, Leboucher G (2004) Sexually attractive phrases increase yolk androgen deposition in canaries, (Serinus canaria). Gen Comp Endocrinol 138:113–120

    Article  PubMed  CAS  Google Scholar 

  • Tobler M, Nilsson JA, Nilsson JF (2007) Costly steroids: egg testosterone modulates nestling metabolic rate in the zebra finch. Biol Lett 3:408–410, doi:10.1098/rsbl.2007.0127

    Article  PubMed  Google Scholar 

  • Torres R, Drummond H (1999) Does large size make daughters of the blue-footed booby more expensive than sons? J Anim Ecol 68:1–10

    Article  Google Scholar 

  • Torres R, Velando A (2003) A dynamic trait affects continuous pair assessment in the blue-footed booby, Sula nebouxii. Behav Ecol Sociobiol 55:65–72

    Article  Google Scholar 

  • Uller T, Eklöf J, Andersson S (2005) Female egg investment in relation to male sexual traits and the potential for transgenerational effects in sexual selection. Behav Ecol Sociobiol 57:584–590

    Article  Google Scholar 

  • Velando A, Alonso-Alvarez C (2003) Differential body condition regulation by males and females in response to experimental manipulations of brood size and parental effort in the blue-footed booby. J Anim Ecol 72:846–856

    Article  Google Scholar 

  • Velando A, Torres R, Espinosa I (2005) Male coloration and chick condition in blue-footed booby: a cross-fostering experiment. Behav Ecol Sociobiol 58:175–180

    Article  Google Scholar 

  • Velando A, Beamonte-Barrientos R, Torres R (2006) Pigment-based skin colour in the blue-footed booby: an honest signal of current condition used by females to adjust reproductive investment. Oecologia 149(3):535–542

    Article  PubMed  Google Scholar 

  • Verboven N, Monaghan P, Evans DM, Schwabl H, Evans N, Whitelaw C, Nager RG (2003) Maternal condition, yolk androgens and offspring performance: a supplemental feeding experiment in the lesser black-backed gull (Larus fuscus). Proc R Soc Lond B 270:2223–2232

    Article  Google Scholar 

  • Von Engelhardt N, Carere C, Dijkstra C, Groothuis TGG (2006) Sex-specific effects of yolk testosterone on survival, begging and growth of zebra finches. Proc R Soc Lond B 273:65–70

    Article  Google Scholar 

  • Wagner E, Williams T (2007) Experimental (antiestrogen-mediated) reduction in egg size negatively affects offspring growth and survival. Physiol Biochem Zool 80(3):293–305

    Article  PubMed  Google Scholar 

  • Wiebe KL, Bortolotti GR (1995) Food dependent benefits of hatching asynchrony in American kestrels Falco sparverius. Behav Ecol Sociobiol 36:49–57

    Article  Google Scholar 

  • Wiebe KL, Korpimäki E, Wiehn J (1998) Hatching asynchrony in Eurasian kestrels in relation to the abundance and predictability of cyclic prey. J Anim Ecol 67:908–917

    Article  Google Scholar 

  • Williams TD (1994) Intraspecific variation in egg size and egg composition in birds: effects on offspring fitness. Biol Rev Camb Philos Soc 69(1):35–59

    Article  PubMed  CAS  Google Scholar 

  • Williamson KA, Surai PF, Graves JA (2006) Yolk antioxidants and mate attractiveness in the zebra finch. Funct Ecol 20(2):354–359

    Article  Google Scholar 

  • Wingfield JC, Farner DS (1975) The determination of five steroids in avian plasma by radioimmunoassay and competitive protein-binding. Steroids 26:311–327

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC, Ramos-Fernández G, Nuñez de la Mora A, Drummond H (1999) The effect of an “El Niño” event on reproduction in male and female blue-footed boobies, Sula nebouxii. Gen Comp Endocrinol 114:163–172

    Article  PubMed  CAS  Google Scholar 

  • Yao G, Shang XJ (2005) A comparison of proliferation of thymocyte by testosterone, dehydroisoandrosterone and androstenedione in vitro. Arch Androl 51:257–265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to M. Cerbón, A. Córdoba, H. Drummond, D. Gil, A. Velando, K. Renton, two anonymous Referees and J. Graves for helpful comments and discussion during the study, to E. Villaseñor, D. Gonzalez and A. Nava Sánches for their great help during field work and to the Laboratorio de Hormonas Esteroides del Instituto Nacional de Ciencias de la Salud y de Nutrición for logistic support for the androgen determination. The project was supported by the Universidad Nacional Autónoma de México (UNAM, PAPIIT IN211406) and CONACYT (47599). Logistic support was provided by the Armada de México, the staff from the Parque Nacional Isla Isabel and the fisherman from San Blas, Nayarit. The experiments comply with the current laws of Mexico; permissions were granted by SEMARNAT and the Parque Nacional Isla Isabel. During the study, F. Dentressangle was supported by a scholarship for graduate studies from UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxana Torres.

Additional information

Communicated by J. Graves

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dentressangle, F., Boeck, L. & Torres, R. Maternal investment in eggs is affected by male feet colour and breeding conditions in the blue-footed booby, Sula nebouxii . Behav Ecol Sociobiol 62, 1899–1908 (2008). https://doi.org/10.1007/s00265-008-0620-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-008-0620-6

Keywords

  • Sexual traits
  • Egg quality
  • Laying asynchrony
  • Yolk androgens
  • Sula nebouxii
  • Maternal effects