Skip to main content
Log in

Inbreeding and competitive ability in the common shrew (Sorex araneus)

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Common shrews (Sorex araneus) maintain a foraging territory for most of their immature life. Possessing a high-quality territory is vital for overwinter survival in the harsh boreal climate, and hence, competitive ability in territorial disputes is expected to be an important component of individual fitness. To test possible association between individual inbreeding and fitness, we used neutral arena trials to assess the competitive performance of young common shrews. The experiment involved pairs of individuals originating from small island populations, where breeding must often occur between related individuals, and from large outbred mainland populations. The percentage of neutral arena tests that an individual won was highly significantly explained by internal relatedness, a surrogate measure of individual inbreeding, measured using ten microsatellite markers. Body size, sex, learning, and population type (mainland vs island) made no significant contributions. Even a low level of individual inbreeding may lead to significant adverse consequences in multiple territorial contests, which may represent a significant cause of inbreeding depression in many wild vertebrate populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen DS, Aspey WP (1986) Determinants of social dominance in eastern gray squirrels (Sciurus carolinensis): a quantitative assessment. Anim Behav 34:81–89

    Article  Google Scholar 

  • Amos W, Wilmer JW, Fullard K, Burg TM, Croxall JP, Bloch D, Coulson T (2001) The influence of parental relatedness on reproductive success. Proc R Soc Lond B Biol Sci 268:2021–2027

    Article  CAS  Google Scholar 

  • Balloux F, Ecoffey E, Fumagalli L, Goudet J, Wyttenbach A, Hausser J (1998) Microsatellite conservation, polymorphism, and GC content in shrew of the genus Sorex (Insectivora, mammalia). Mol Biol Evol 15:473–475

    PubMed  CAS  Google Scholar 

  • Balloux F, Brunner H, Lugon-Moulin N, Hausser J, Goudet J (2000) Microsatellites can be misleading: an empirical and simulation study. Evolution 54:1414–1422

    Article  PubMed  CAS  Google Scholar 

  • Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13:3021–3032

    Article  PubMed  CAS  Google Scholar 

  • Barnard CJ, Brown CAJ (1982) The effects of prior residence, competitive ability and food availability on the outcome of interactions between shrews (Sorex araneus L.). Behav Ecol Sociobiol 10:307–312

    Article  Google Scholar 

  • Beauchamp G (2004) Reduced flocking by birds on islands with relaxed predation. Proc R Soc Lond B Biol Sci 271:1039–1042

    Article  Google Scholar 

  • Bierne N, Launey S, Naciri-Graven Y, Bonhomme F (1998) Early effects of inbreeding as revealed by microsatellite analysed on Ostrea edulis larvae. Genetics 148:1893–1906

    PubMed  CAS  Google Scholar 

  • Brown JH, Ross B, McCauley S, Dance S, Taylor AC, Huntingford FA (2002) Resting metabolic rate and social status in juvenile giant freshwater prawns Macrobrachium rosenbergi. Mar Freshw Behav Physiol 36:31–40

    Article  CAS  Google Scholar 

  • Charlesworth D (1991) The apparent selection on neutral marker loci in partially in breeding populations. Genet. Res. 57:159–175

    Google Scholar 

  • Chase ID, Bartolomeo C, Dugatkin LA (1994) Aggressive interactions and inter-contest interval: how long do winners keep winning? Anim Behav 48:393–400

    Article  Google Scholar 

  • Churchfield S (1990) Natural history of shrews. Christopher Helm, London

    Google Scholar 

  • Clutton-Brock TH (1988) Reproductive success. The University of Chicago Press, Chicago

    Google Scholar 

  • Crnokrak P, Roff AD (1999) Inbreeding depression in the wild. Heredity 83:260–270

    Article  PubMed  Google Scholar 

  • Croin-Michielsen N (1966) Intraspecific and interspecific competition in the shrews Sorex araneus L. and Sorex minutus L. Arch Neerl Zool 17:73–174

    Article  Google Scholar 

  • Crowfort P (1957) The life of the shrew. Max Reinhardt, London

    Google Scholar 

  • David P, Delay B, Berthou P, Jarne P (1995) Alternative models for allozyme-associated heterosis in the marine bivalve Spisula ovalis. Genetics 139:1719–1726

    PubMed  CAS  Google Scholar 

  • Dieringer D, Schlötterer C (2002) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  Google Scholar 

  • Eklund A (1996) The effects of inbreeding on aggression in wild house mice (Mus domesticus). Behaviour 133:883–901

    Google Scholar 

  • Eldridge MDB, King JM, Loupis AK, Spencer PBS, Taylor AC, Pope LC, Hall GP (1999) Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv Biol 13:531–541

    Article  Google Scholar 

  • Falconer DS (1981) An introduction to quantitative genetics. Longman, London

    Google Scholar 

  • Foster JB (1964) Evolution of mammals on islands. Nature 202:234–235

    Article  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–318

    Article  PubMed  Google Scholar 

  • Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:359

    Article  Google Scholar 

  • Hanski I (1984) What does a shrew do in an energy crisis? In: Smith RH, Sibly RM (eds) Behaviour ecology. Blackwell, Oxford

    Google Scholar 

  • Hanski I (1993) Dynamics of small mammals on islands. Ecography 16:372–375

    Article  Google Scholar 

  • Hanski I, Kuitunen J (1986) Shrews on small islands: epigenetic variation elucidates population stability. Holarct Ecol 9:193–204

    Google Scholar 

  • Hanski I, Peltonen A, Kaski L (1991) Natal dispersal and social dominance in the common shrew. Oikos 62:48–57

    Article  Google Scholar 

  • Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Ann Rev Ecol Syst 31:139–162

    Article  Google Scholar 

  • Hildner KK, Soulé ME (2004) Relationship between the energetic cost of burrowing and genetic variability among populations of the pocket gopher, T. bottae: does physiological fitness correlate with genetic variability? J Exp Biol 207:2221–2227

    Article  PubMed  Google Scholar 

  • Hoffman JI, Boyd IL, Amos W (2004) Exploring the relationship between parental relatedness and male reproductive success in the Antarctic fur seal (Arctocephalus gazella). Evolution 58:2087–2099

    Article  PubMed  Google Scholar 

  • Holand Ø, Gjøstein H, Losvar A, Kumpula J, Smith ME, Røed KH, Nieminen M, Weladji RB (2004) Social rank in female reindeer (Rangifer tarandus): effects of body mass, antler size and age. J Zool 263:365–372

    Article  Google Scholar 

  • Hsu Y, Wolff LL (1999) The winner and loser effect: integrating multiple experiences. Anim Behav 57:903–910

    Article  PubMed  Google Scholar 

  • Huntingford FA, Turner A (1987) Animal conflict. Chapman & Hall, London

    Google Scholar 

  • Kawano K (1992) Aggressive behavior of the domesticated house musk shrew (Suncus murinus) in inter-male inter-female and heterosexed interactions. J Ethol 10:119–132

    Article  Google Scholar 

  • Lahti K, Huuskonen H, Laurila A, Piironen J (2002) Metabolic rate and aggressiveness between brown trout populations. Funct Ecol 16:167–174

    Article  Google Scholar 

  • Madsen T, Stille B, Shine R (1996) Inbreeding depression in an isolated population of adders (Vipera berus). Biol Conserv 75:113–118

    Article  Google Scholar 

  • Magnanou E, Fons R, Blondel J, Morand S (2005) Energy expenditure in Crocidurinae shrews (Insectivora): is metabolism a key component of the insular syndrome? Comp Biochem Physiol A 142:276–285

    Article  CAS  Google Scholar 

  • Meagher S, Penn DJ, Potts WK (2000) Male–male competition magnifies inbreeding depression in wild house mice. Proc Natl Acad Sci USA 97:3324–3329

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe NB, Taylor AC, Thorpe JE (1995) Metabolic rate, social status and life-history strategies in Atlantic salmon. Anim Behav 49:431–436

    Article  Google Scholar 

  • Moraleva NV (1989) Intraspecific interactions in the common shrew Sorex araneus in Central Siberia. Ann Zool Fenn 26:425–432

    Google Scholar 

  • Nevison CM, Barnard CJ, Hurst JL (2003) The consequence of inbreeding for modulating social relationships between competitors. Appl Anim Behav Sci 81:387–398

    Article  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Ralls K, Ballou J (1983) Extinction: lessons from zoos. In: Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas L (eds) Genetics and conservation: a reference for managing wild animal and plant populations. Benjamin Cummings, Menlo Park, CA

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenism. J Heredity 86:248–249

    Google Scholar 

  • Rutte C, Taborsky M, Brinkhof MWG (2006) What sets the odds of winning and loosing? TREE 21:16–21

    PubMed  Google Scholar 

  • Rychlik L (1998) Evolution of social systems in shrews. In: Wójcik JM, Wolsan M (eds) Evolution of shrews. Mammal Research Institute, Polish Academy of Sciences, Bialowieza

    Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Schuett GW (1997) Body size and agonistic experience affect dominance and mating success in male copperheads. Anim Behav 54:213–224

    Article  PubMed  Google Scholar 

  • Slate J, David P, Dodds KG, Veenvliet BA, Glass BC, Broad TE, McEwan JC (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255–265

    Article  PubMed  CAS  Google Scholar 

  • Tiira K, Laurila A, Peuhkuri N, Piironen J, Ranta E, Primmer RP (2003) Aggressiveness is associated with genetic diversity in landlocked salmon. Mol Ecol 12:2399–2407

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whitehouse MA (1997) Experience influences male–male contests in the spider Argyrodes antipodiana (Theridiidae: Araneae). Anim Behav 53:913–923

    Article  Google Scholar 

  • Wójcik JM, Borodin PM, Fedyk S, Fredga K, Hausser J, Mishta A, Orlov VN, Searle JB, Volobouev V, Zima J (2003) The list of the chromosome races of the common shrew Sorex araneus (updated 2002). Mammalia 67:169–178

    Article  Google Scholar 

  • Wyttenbach A, Favre L, Hausser J (1997) Isolation and characterization of simple sequence repeats in the genome of the common shrew. Mol Ecol 6:797–800

    Article  PubMed  CAS  Google Scholar 

  • Zuri I, Rado R (2000) Sociality and agonistic behaviour in the lesser white-toothed shrew Crocidura suaveolens. J Mammal 81:606–616

    Article  Google Scholar 

  • Zwolak R, Rychlik L (2004) Does the reduction of locomotor activity serve as an aggression avoidance mechanism in shrews (Soricidae)? Electron J Pol Agric Univ Biol 7(2)

Download references

Acknowledgement

We thank Tomas Roslin and Sami Aikio for help with the analyses. Itsuro Koizumi, Luisa Orsini, Ilik Saccheri, and two anonymous referees made helpful comments on the manuscript. Anna Tuhti helped in the field work. This study was funded by the Academy of Finland (grant numbers 38604 and 44887, Finnish Centre of Excellence Programme, 2000–2005). The experimental procedures used were approved by the Experimental Animal Ethics Committee of the University of Helsinki, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilkka Hanski.

Additional information

Communicated by F. Trillmich

Rights and permissions

Reprints and permissions

About this article

Cite this article

Välimäki, K., Hinten, G. & Hanski, I. Inbreeding and competitive ability in the common shrew (Sorex araneus). Behav Ecol Sociobiol 61, 997–1005 (2007). https://doi.org/10.1007/s00265-006-0332-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-006-0332-8

Keywords

Navigation