Skip to main content
Log in

Carotenoid-based colouration and ultraviolet reflectance of the sexual ornaments of grouse

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Among the most familiar sexual signals are red, yellow, and orange sexual traits pigmented by carotenoids. Many birds can detect near-ultraviolet (UV) light, and UV signals can play key roles in mate choice. Grouse (Tetraonidae) exhibit bright carotenoid-dependent sexual ornaments, their supra-orbital combs, which to humans appear orange-red. Combs also reflect in the UV, which is not visible to humans but is likely to be visible to grouse. In male red grouse Lagopus lagopus scoticus, we show that comb UV reflectance decreases with increasing comb size and redness. By removing the epidermis of combs, where carotenoid pigments are, we show that the UV reflectance is a property of the dermis, underneath the red pigmented epidermis. Carotenoid pigmentation of combs acted as a mask to reduce reflectance by the dermis in the range 400–550 nm and in the UV, 300–400 nm. Patagium skin (non-ornamental skin under the wing) also reflects in the UV, but epidermis removal on this bare part tended to reduce UV reflectance, whereas removal of the red epidermis of combs increased UV reflectance. Males in better condition (greater body mass relative to size) had bigger and redder combs, but with less UV. Thus, carotenoid pigments of grouse combs are deposited on a white background with significant UV reflectance, which can influence how the signal is perceived by conspecifics. Carotenoid-based traits exhibit UV reflectance in a number of species, but how UV reflectance and carotenoid pigmentation influence colour remains little known for integumentary ornaments compared to plumage traits. UV vision is not uncommon in birds and other animals, so future studies should investigate how UV reflectance influences the perception of carotenoid-based signals of quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Aust O, Stahl W, Sies H, Tronnier H, Heinrich U (2005) Supplementation with tomato-based products increases lycopene, phytofluene, and phytoene levels in human serum and protects against UV-light-induced erythema. Int J Vitam Nutr Res 75:54–60

    Article  PubMed  CAS  Google Scholar 

  • Badyaev AV, Hill GE (2000) Evolution of sexual dichromatism: contribution of carotenoid- versus melanin-based coloration. Biol J Linn Soc 69:153–172

    Article  Google Scholar 

  • Banks AN (2001) For your eyes only? The role of UV in mate choice. Trends Ecol Evol 16:473–474

    Article  Google Scholar 

  • Bart J, Earnst SL (1999) Relative importance of male and territory quality in pairing success of male rock ptarmigan (Lagopus mutus). Behav Ecol Sociobiol 45:355–359

    Article  Google Scholar 

  • Bennett ATD, Cuthill IC, Partridge JC, Maier EJ (1996) Ultraviolet vision and mate choice in zebra finches. Nature 380:433–435

    Article  CAS  Google Scholar 

  • Bleiweiss R (2004) Novel chromatic and structural biomarkers of diet in carotenoid-bearing plumage. Proc R Soc Lond B 271:2327–2335

    Article  Google Scholar 

  • Bleiweiss R (2005) Variation in ultraviolet reflectance by carotenoid-bearing feathers of tanagers (Thraupini: Emberizinae: Passeriformes). Biol J Linn Soc 84:243–257

    Article  Google Scholar 

  • Blount JD, Metcalfe NB, Birkhead TR, Surai PF (2003) Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300:125–127

    Article  PubMed  CAS  Google Scholar 

  • Bortolotti GR (2006) Natural selection and avian coloration: protection, concealment, advertisement or deception? In: Hill GE, McGraw KJ (eds) Avian coloration, vol 2: function and evolution. University Press, Harvard, pp 3–35

    Google Scholar 

  • Bortolotti GR, Negro JJ, Tella JL, Marchant TA, Bird DM (1996) Sexual dichromatism in birds independent of diet, parasites and androgens. Proc R Soc Lond B 263:1171–1176

    Article  CAS  Google Scholar 

  • Bortolotti GR, Kimberley JF, Smiths JE (2003) Carotenoid concentration and coloration of American kestrels (Falco sparverius) disrupted by experimental exposure to PCBs. Funct Ecology 17:651–657

    Article  Google Scholar 

  • Brawner WR, Hill GE, Sundermann CA (2000) Effects of coccidial and mycoplasmal infections on carotenoid- based plumage pigmentation in male house finches. Auk 117:952–963

    Article  Google Scholar 

  • Bright A, Waas JR (2002) Effects of bill pigmentation and UV reflectance during territory establishment in blackbirds. Anim Behav 64:207–213

    Article  Google Scholar 

  • Buchholz R (1997) Male dominance and variation in fleshy head ornamentation in wild turkeys. J Avian Biol 28:223–230

    Google Scholar 

  • Burkhardt D (1989) UV vision: a bird’s eye view of feathers. J Comp Physiol A 164:787–796

    Article  Google Scholar 

  • Burley N, Price DK, Zann RA (1992) Bill color, reproduction and condition effects in wild and domesticated zebra Finches. Auk 109:13–23

    Google Scholar 

  • Cramp S, Simmons KEL (1980) The birds of the western Palearctic, vol 2. Oxford University Press, Oxford

    Google Scholar 

  • Cuthill IC, Partridge JC, Bennett ATD, Church SC, Hart NS, Hunt S (2000) Ultraviolet vision in birds. Adv Study Behav 29:159–214

    Article  Google Scholar 

  • Darlington RB, Smulders TV (2001) Problems with residual analysis. Anim Behav 62:599–602

    Article  Google Scholar 

  • Delahay RJ, Speakman JR, Moss R (1995) The energetic consequences of parasitism—Effects of a developing infection of Trichostrongylus tenuis (Nematoda) on red grouse (Lagopus lagopus scoticus): energy balance, body weight and condition. Parasitology 110:473–482

    Article  Google Scholar 

  • Dresp B, Jouventin P, Langley K (2005) Ultraviolet reflecting photonic microstructures in the king penguin beak. Biol Lett 1:310–313

    Article  PubMed  Google Scholar 

  • Egeland ES, Parker H, Liaaenjensen S (1993) Carotenoids in combs of capercaillie (Tetrao urogallus) fed defined diets. Poultry Sci 72:747–751

    CAS  Google Scholar 

  • Endler JA (1990) On the measurement and classification of colour in studies of animal colour patterns. Biol J Linn Soc 41:315–352

    Google Scholar 

  • Faivre B, Gregoire A, Preault M, Cezilly F, Sorci G (2003) Immune activation rapidly mirrored in a secondary sexual trait. Science 300:103

    Article  PubMed  CAS  Google Scholar 

  • García-Berthou E (2001) On the misuse of residuals in ecology: testing regression residuals vs. The analysis of covariance. J Anim Ecol 70:708–711

    Article  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds—a role for parasites. Science 218:384–387

    Article  PubMed  CAS  Google Scholar 

  • Hausmann F, Arnold KE, Marshall NJ, Owens IPF (2003) Ultraviolet signals in birds are special. Proc R Soc Lond B 270:61–67

    Article  Google Scholar 

  • Hill GE (2000) Energetic constraints on expression of carotenoid-based plumage coloration. J Avian Biol 31:559–566

    Article  Google Scholar 

  • Hill GE (2002) A red bird in a brown bag: the function and evolution of ornamental plumage coloration in the house finch. Oxford University Press, Oxford

    Google Scholar 

  • Hill GE, Brawner WR (1998) Melanin-based plumage coloration in the house finch is unaffected by coccidial infection. Proc R Soc Lond B 265:1105–1109

    Article  Google Scholar 

  • Hill GE, Inouye CY, Montgomerie R (2002) Dietary carotenoids predict plumage coloration in wild house finches. Proc R Soc Lond B 269:1119–1124

    Article  CAS  Google Scholar 

  • Hollett KG, Thomas VG, MacDonald SD (1984) Structural and functional aspects of supraorbital combs of grouse. In: Hudson P, Lovel TWI (eds) Third International Grouse Symposium. World Pheasant Association, York, pp 193–211

    Google Scholar 

  • Hudson PJ (1986) The red grouse: the biology and management of a wild gamebird. The Game Conservancy Trust, Fordingbridge

    Google Scholar 

  • Hunt S, Cuthill IC, Bennett ATD, Griffiths R (1999) Preferences for ultraviolet partners in the blue tit. Anim Behav 58:809–815

    Article  PubMed  Google Scholar 

  • Hunt S, Cuthill IC, Bennett ATD, Church SC, Partridge JC (2001) Is the ultraviolet waveband a special communication channel in avian mate choice? J Exp Biol 204:2499–2507

    PubMed  CAS  Google Scholar 

  • Hunt S, Kilner RM, Langmore NE, Bennett ATD (2003) Conspicuous, ultraviolet-rich mouth colours in begging chicks. Proc R Soc Lond B 270:S25–S28

    Article  Google Scholar 

  • Johnsen A, Andersson S, Ornborg J, Lifjeld JT (1998) Ultraviolet plumage ornamentation affects social mate choice and sperm competition in bluethroats (Aves: Luscinia s. svecica): a field experiment. Proc R Soc Lond B 265:1313–1318

    Article  Google Scholar 

  • Johnsgard PA (1983) The grouse of the world. Croom Helm, Beckenham, UK

    Google Scholar 

  • McGraw KJ, Ardia DR (2003) Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test. Am Nat 162:704–712

    Article  PubMed  Google Scholar 

  • McGraw KJ, Hudon J, Hill GE, Parker RS (2005a) A simple and inexpensive chemical test for behavioral ecologists to determine the presence of carotenoid pigments in animal tissues. Behav Ecol Sociobiol 57:391–397

    Article  Google Scholar 

  • McGraw KJ, Hill GE, Parker RS (2005b) The physiological costs of being colourful: nutritional control of carotenoid utilization in the American goldfinch, Carduelis tristis. Anim Behav 69:653–660

    Article  Google Scholar 

  • McGraw KJ, Correa SM, Adkins-Regan E (2006) Testosterone upregulates lipoprotein status to control sexual attractiveness in a colorful songbird. Behav Ecol Sociobiol 60:117–122

    Article  Google Scholar 

  • Mínguez-Mosquera I (1993) Clorofilas y carotenoides en tecnologia de alimentos. Universidad de Sevilla, Sevilla, Spain

  • Møller AP, Biard C, Blount JD, Houston DC, Ninni P, Saino N, Surai PF (2000) Carotenoid-dependent signals: Indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poult Biol Rev 11:137–159

    Google Scholar 

  • Moss R (1972) Food selection by red grouse (Lagopus lagopus scoticus (Lath.)) in relation to chemical composition. J Anim Ecol 41:411–423

    Article  Google Scholar 

  • Mougeot F, Arroyo BE (2006) Ultraviolet reflectance by the cere of raptors. Biol Lett 2:173–176

    Article  PubMed  Google Scholar 

  • Mougeot F, Redpath S (2004) Sexual ornamentation relates to immune function in male red grouse Lagopus lagopus scoticus. J Avian Biol 35:425–433

    Article  Google Scholar 

  • Mougeot F, Irvine J, Seivwright LJ, Redpath S, Piertney SB (2004) Testosterone, immunocompetence and honest sexual signaling in male red grouse. Behav Ecol 15:630–637

    Article  Google Scholar 

  • Mougeot F, Redpath SM, Leckie F (2005a) Ultra-violet reflectance of male and female red grouse, Lagopus lagopus scoticus: sexual ornaments reflects nematode parasite intensity. J Avian Biol 36:203–209

    Article  Google Scholar 

  • Mougeot F, Dawson A, Redpath S, Leckie F (2005b) Testosterone and autumn territorial behaviour in male red grouse Lagopus lagopus scoticus. Horm Behav 47:576–584

    Article  PubMed  CAS  Google Scholar 

  • Mougeot F, Evans S, Redpath S (2005c) Interactions between population processes in a cyclic species: parasites reduce autumn territorial behaviour in male red grouse. Oecologia 144:289–298

    Article  PubMed  Google Scholar 

  • Mougeot F, Redpath S, Piertney SB, Hudson PJ (2005d) Separating behavioural and physiological mechanisms in testosterone mediated trade-offs. Am Nat 166:158–168

    Article  PubMed  Google Scholar 

  • Mundinger PC (1972) Annual testicular cycle and bill color change in the eastern American goldfinch. Auk 89:403–419

    Google Scholar 

  • Negro JJ, Figuerola J, Garrido J, Green AJ (2001) Fat stores in birds: an overlooked sink for carotenoid pigments? Funct Ecol 15:297–303

    Article  Google Scholar 

  • Olson VA, Owens IPF (1998) Costly sexual signals: are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514

    Article  Google Scholar 

  • Owens IPF, Short RV (1995) Hormonal basis of sexual dimorphism in Birds—Implications for new theories of sexual selection. Trends Ecol Evol 10:44–47

    Article  Google Scholar 

  • Peters A, Denk AG, Delhey AG, Kempenaers B (2004) Carotenoid-based bill colour as an indicator of immunocompetence and sperm performance in male mallards. J Evol Biol 17:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Redpath S, Mougeot F, Leckie F, Evans S (2006) The effects of autumn testosterone on survival and productivity in red grouse Lagopus lagopus scoticus. Anim Behav 71:1297–1305

    Article  Google Scholar 

  • Rintamaki PT, Hoglund J, Karvonen E, Alatalo RV, Bjorklund N, Lundberg A, Ratti O, Vouti J (2000) Combs and sexual selection in black grouse (Tetrao tetrix). Behav Ecol 11:465–471

    Article  Google Scholar 

  • SAS (2001) SAS/STAT user’s guide, version 8.01. SAS Institute, Cary, NC

    Google Scholar 

  • Seivwright LJ, Redpath S, Mougeot F, Watt L, Hudson PJ (2004) Faecal egg counts provide a reliable measure of Trichostrongylus tenuis intensities in free-living red grouse Lagopus lagopus scoticus. J Helminthol 78:69–76

    Article  PubMed  CAS  Google Scholar 

  • Seivwright LJ, Redpath S, Mougeot F, Leckie F, Hudson PJ (2005) Interactions between intrinsic and extrinsic mechanisms in a cyclic species: testosterone increases parasite infection in red grouse. Proc R Soc Lond B 272:1299–1304

    Article  CAS  Google Scholar 

  • Shawkey MD, Hill GE (2005) Carotenoids need structural colours to shine. Biol Lett 1:12–124

    Article  CAS  Google Scholar 

  • Siitari H, Viitala J (2002) Behavioural evidence for ultraviolet vision in a tetraonid species: foraging experiment with black grouse Tetrao tetrix. J Avian Biol 33:199–202

    Article  Google Scholar 

  • Stahl W, Sies H (2002) Carotenoids and protection against solar UV radiation. Skin Pharmacol Appl Skin Physiol 15:291–296

    Article  PubMed  CAS  Google Scholar 

  • Thompson CW, Hillgarth N, Leu M, McClure HE (1997) High parasite load in house finches (Carpodacus mexicanus) is correlated with reduced expression of a sexually selected trait. Am Nat 149:270–294

    Article  Google Scholar 

  • von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H (1999) Good genes, oxidative stress and condition-dependent sexual signals. Proc R Soc Lond B 266:1–12

    Article  Google Scholar 

  • Wynn-Williams DD, Edwards HGM (2002) Environmental UV radiation: biological strategies for protection and avoidance. In: Horneck G, Baumstark-Khan C (eds) Astrobiology. The quest for the conditions of life. Springer, Berlin Heidelberg New York, pp 245–260

    Google Scholar 

  • Zuk M, Johnsen TS, Maclarty T (1995) Endocrine-immune interactions, ornaments and mate choice in red jungle fowl. Proc R Soc Lond B 260:205–210

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful to the owner and gamekeepers from the Edinglassie estate for allowing us to collect the data on red grouse. Particular thanks are due to D. Calder for his help with the data collection and to R. Moss for providing specimens of black grouse, capercaillie, and ptarmigan for comb reflectance measurements. We are very grateful to I. Garcia and J. J. Negro (Molecular Ecology Laboratory of Doñana Biological Station, CSIC Spain) for conducting the HPLC analyses on red grouse combs. We also thank M. D. Padilla for transporting samples and C. Alonso-Alvarez for helpful comments on the manuscript. F. Mougeot was supported by a Ramon y Cajal grant (Ministerio de Educación y Ciencia, Spain). L. Pérez-Rodríguez was supported by a pre-doctoral FPU grant (Ministerio de Educación y Ciencia). J. Martínez-Padilla was supported by a post-doctoral grant (ref. EX-27-04-04, Ministerio de Educación y Ciencia). G. Bortolotti was supported by a NSERC grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mougeot.

Additional information

Communicated by K. McGraw

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mougeot, F., Martínez-Padilla, J., Pérez-Rodríguez, L. et al. Carotenoid-based colouration and ultraviolet reflectance of the sexual ornaments of grouse. Behav Ecol Sociobiol 61, 741–751 (2007). https://doi.org/10.1007/s00265-006-0304-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-006-0304-z

Keywords

Navigation