Advertisement

Behavioral Ecology and Sociobiology

, Volume 61, Issue 3, pp 435–447 | Cite as

Is big the best? Queen size, usurpation and nest closure in a primitively eusocial sweat bee (Lasioglossum malachurum)

  • Marion U. Zobel
  • Robert J. Paxton
Original Article

Abstract

For primitively eusocial insects in which a single foundress establishes a nest at the start of the colony cycle, the solitary provisioning phase before first worker emergence represents a risky period when other, nestless foundresses may attempt to usurp the nest. In the primitively eusocial sweat bee Lasioglossum malachurum (Hymenoptera, Halictidae), spring foundresses compete for nests which are dug into hard soil. Nest-searching foundresses (‘floaters’) frequently inspected nests during this solitary phase and thereby exerted a usurpation pressure on resident queens. Usurpation has been hypothesised to increase across the solitary provisioning phase and favour closure of nests at an aggregation, marking the termination of the solitary provisioning phase by foundresses, before worker emergence. However, our experimental and observational data suggest that usurpation pressure may remain constant or even decrease across the solitary provisioning phase and therefore cannot explain nest closure before first worker emergence. Levels of aggression during encounters between residents and floaters were surprisingly low (9% of encounters across 2 years), and the outcome of confrontations was in favour of residents (resident maintains residency in 94% of encounters across 2 years). Residents were significantly larger than floaters. However, the relationship between queen size and offspring production, though positive, was not statistically significant. Size therefore seems to confer a considerable advantage to a queen during the solitary provisioning phase in terms of nest residency, but its importance in terms of worker production appears marginal. Factors other than intraspecific usurpation need to be invoked to explain the break in provisioning activity of a foundress before first worker emergence.

Keywords

Foundress Competition Alternative strategy Activity break Reproductive success Worker production Halictidae 

Notes

Acknowledgements

We thank two anonymous referees for very useful and constructive criticism of the manuscript, and Anne Zillikens, Antonella Soro and Tomàs Murray for their helpful comments on an earlier version. This work was partly supported by the DFG (Pa 632), the DAAD and the Erwin–Riesch–Stiftung. MUZ thanks H.R. Köhler for support and W. Engels for advice. Bees were collected under permit 56-6/8852.15 (Regierungspräsidium Tübingen). Experiments and observations conform to the laws of Germany.

References

  1. Alcock J (1996) The relation between male body size, fighting, and mating success in Dawson’s burrowing bee, Amegilla dawsoni (Apidae, Apinae, Anthophorini). J Zool 239:663–674CrossRefGoogle Scholar
  2. Alcock J (1997) Competition from large males and the alternative mating tactics of small males of Dawson’s burrowing bee (Amegilla dawsoni) (Apidae, Apinae, Anthophorini). J Insect Behav 10:99–113Google Scholar
  3. Andersson M (1994) Sexual size dimorphism. In: Sexual selection. Princeton University Press, Princeton, New Jersey, pp 247–293Google Scholar
  4. Archer ME (1985) Population dynamics of the social wasps Vespula vulgaris and Vespula germanica in England. J Anim Ecol 54:473–485CrossRefGoogle Scholar
  5. Ayasse M (1991) Chemische Kommunikation bei der primitiv eusozialen Furchenbiene Lasioglossum malachurum (Halictidae): Ontogenese kastenspezifischer Duftstoffbouquets, Paarungsbiologie und Nesterkennung. Ph.D. thesis, University of TübingenGoogle Scholar
  6. Balas MT, Adams ES (1997) Intraspecific usurpation of incipient fire ant colonies. Behav Ecol 8:99–103Google Scholar
  7. Bernasconi G, Strassmann JE (1999) Cooperation among unrelated individuals: the ant foundress case. Trends Ecol Evol 14:477–482PubMedCrossRefGoogle Scholar
  8. Blanckenhorn WU (2000) The evolution of body size: what keeps organisms small? Q Rev Biol 75:385–407PubMedCrossRefGoogle Scholar
  9. Bosch J, Vicens N (2006) Relationship between body size, provisioning rate, longevity and reproductive success in females of the solitary bee Osmia cornuta. Behav Ecol Sociobiol 60:26–33. DOI 10.1007/s00265-005-0134-4 CrossRefGoogle Scholar
  10. Bridge AP, Elwood RW, Dick JTA (2000) Imperfect assessment and limited information preclude optimal strategies in male–male fights in the orb-weaving spider Metellina mengei. Proc R Soc Lond B 267:273–279CrossRefGoogle Scholar
  11. Brockmann HJ (1993) Parasitizing conspecifics—comparisons between Hymenoptera and birds. Trends Ecol Evol 8:2–4CrossRefGoogle Scholar
  12. Brockmann HJ, Grafen A, Dawkins R (1979) Evolutionary stable nesting strategy in a digger wasp. J Theor Biol 77:473–496PubMedCrossRefGoogle Scholar
  13. Cane JH (1987) Estimation of bee size using intertegular span (Apoidea). J Kans Entomol Soc 60:145–147Google Scholar
  14. Coelho B (2002) The biology of the primitively eusocial Augochlorposis iris (Schrottky, 1902) Hymenoptera, Halictidae). Insectes Soc 49:181–190 CrossRefGoogle Scholar
  15. Coelho JR, Holliday CW (2001) Effects of size and flight performance on intermale mate competition in the cicada killer, Sphecius speciosus Drury (Hymenoptera: Sphecidae). J Insect Behav 14:345–351CrossRefGoogle Scholar
  16. Cronin AL, Hirata M (2003) Social polymorphism in the sweat bee Lasioglossum (Evylaeus) baleicum (Cockerell) (Hymenoptera, Halictidae) in Hokkaido, northern Japan. Insectes Soc 50:379–386CrossRefGoogle Scholar
  17. Enquist M, Leimar O (1987) Evolution of fighting behavior—the effect of variation in resource value. J Theor Biol 127:187–205CrossRefGoogle Scholar
  18. Field J (1992) Intraspecific parasitism as an alternative reproductive tactic in nest-building wasps and bees. Biol Rev 67:79–126CrossRefGoogle Scholar
  19. Field J (1996) Patterns of provisioning and iteroparity in a solitary halictine bee, Lasioglossum (Evylaeus) fratellum (Perez), with notes on L. (E.) calceatum (Scop.) and L. (E.) villosulum (K.). Insectes Soc 43:167CrossRefGoogle Scholar
  20. Field J, Shreeves G, Sumner S (1999) Group size, queuing and helping decisions in facultatively eusocial hover wasps. Behav Ecol Sociobiol 45:378–385CrossRefGoogle Scholar
  21. Foster KR, Ratnieks FLW, Raybould AF (2000) Do hornets have zombie workers? Mol Ecol 9:735–742PubMedCrossRefGoogle Scholar
  22. Foster KR, Ratnieks FLW, Gyllenstrand N, Thoren PA (2001) Colony kin structure and male production in Dolichovespula wasps. Mol Ecol 10:1003–1010PubMedCrossRefGoogle Scholar
  23. Goulson D (2003) Bumblebees. Ecology and behaviour. Oxford University Press, OxfordGoogle Scholar
  24. Heinze J, Keller L (2000) Alternative reproductive strategies: a queen perspective in ants. Trends Ecol Evol 15:508–512PubMedCrossRefGoogle Scholar
  25. Honěk A (1993) Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66:483–492CrossRefGoogle Scholar
  26. Kaitala V, Smith BH, Getz WM (1990) Nesting strategies of primitively eusocial bees—a model of nest usurpation during the solitary state of the nesting cycle. J Theor Biol 144:445–471Google Scholar
  27. Klahn J (1988) Intraspecific comb usurpation in the social wasp Polistes fuscatus. Behav Ecol Sociobiol 23:1–8CrossRefGoogle Scholar
  28. Knerer G (1969) Sozialstruktur und ihre Rolle in der Populationsdynamik von Furchenbienen. In: 6th Congress of the International Union for the Study of Social Insects. Bern, pp 101–107Google Scholar
  29. Knerer G (1973) Periodizität und Strategie der Schmarotzer einer sozialen Schmalbiene, Evylaeus malachurus (K.) (Apoidea: Halictidae). Zool Anz (Leipzig) 190:41–63Google Scholar
  30. Knerer G (1992) The biology and social behaviour of Evylaeus malachurus (K.) (Hymenoptera; Halictidae) in different climatic regions of Europe. Zool Jahrb Abt Syst Ökol Geogr Tiere 119:261–290Google Scholar
  31. Lopez-Vaamonde C, Koning JW, Brown RM, Jordan WC, Bourke AFG (2004) Social parasitism by male-producing reproductive workers in a eusocial insect. Nature 430:557–560PubMedCrossRefGoogle Scholar
  32. Makino S (1989a) Switching of behavioral option from renesting to nest usurpation after nest loss by the foundress of a paper wasp, Polistes riparius: a field test. J Ethol 7:62–64CrossRefGoogle Scholar
  33. Makino S (1989b) Usurpation and nest rebuilding in Polistes riparius: two ways to reproduce after the loss of the original nest (Hymenoptera: Vespidae). Insectes Soc 36:116–128CrossRefGoogle Scholar
  34. Michener C (1974) The social behaviour of the bees. Belknap Press of Harvard University, Cambridge, MAGoogle Scholar
  35. Mitesser O (2005) Evolution of activity patterns in annual eusocial insects. In: Proceedings of the 3rd European Congress on Social Insects, St. Petersburg, RussiaGoogle Scholar
  36. Mitesser O, Weissel N, Strohm E, Poethke H-J (2006) The evolution of activity breaks in the nest cycle of annual eusocial bees: a model of delayed exponential growth. BMC Evol Biol 6:45. DOI 10.1186/1471-2148-6-45 PubMedCrossRefGoogle Scholar
  37. Mueller UG, Warneke AF, Grafe TU, Ode PR (1992) Female size and nest defense in the digger wasp Cerceris fumipennis (Hymenoptera, Sphecidae, Philanthinae). J Kans Entomol Soc 65:44–52Google Scholar
  38. O’Neill KM (1983) The significance of body size in territorial interactions of male beewolves (Hymenoptera, Sphecidae, Philanthus). Anim Behav 31:404–411CrossRefGoogle Scholar
  39. Pabalan N, Davey KG, Packer L (2000) Escalation of aggressive interactions during staged encounters in Halictus ligatus Say (Hymenoptera: Halictidae), with a comparison of circle tube behaviors with other halictine species. J Insect Behav 13:627–650CrossRefGoogle Scholar
  40. Packer L (1983) The nesting biology and social organization of Lasioglossum (Evylaeus) laticeps (Hymenoptera, Halictidae) in England. Insectes Soc 30:367–375CrossRefGoogle Scholar
  41. Packer L, Knerer G (1985) Social evolution and its correlates in bees of the subgenus Evylaeus (Hymenoptera, Halictidae). Behav Ecol Sociobiol 17:143–149Google Scholar
  42. Paxton RJ (2005) Male mating behaviour and mating systems of bees: an overview. Apidol 36:145–156. DOI 10.1051/apido:2005007 CrossRefGoogle Scholar
  43. Paxton RJ, Tengö J (1996) Intranidal mating, emergence, and sex ratio in a communal bee Andrena jacobi Perkins 1921 (Hymenoptera: Andrenidae). J Insect Behav 9:421–440CrossRefGoogle Scholar
  44. Paxton RJ, Kukuk PF, Tengö J (1999) Effects of familiarity and nestmate number on social interactions in two communal bees, Andrena scotica and Panurgus calcaratus (Hymenoptera, Andrenidae). Insectes Soc 46:109–118CrossRefGoogle Scholar
  45. Paxton RJ, Thoren PA, Estoup A, Tengö J (2001) Queen-worker conflict over male production and the sex ration in a facultatively polyandrous bumblebee, Bombus hypnorum: the consequences of nest usurpation. Mol Ecol 10:427–432CrossRefGoogle Scholar
  46. Paxton RJ, Ayasse M, Field J, Soro A (2002) Complex sociogenetic organization and reproductive skew in a primitively eusocial sweat bee, Lasioglossum malachurum, as revealed by microsatellites. Mol Ecol 11:2405–2416PubMedCrossRefGoogle Scholar
  47. Potts SG, Willmer P (1997) Abiotic and biotic factors influencing nest-site selection by Halictus rubicundus, a ground-nesting halictine bee. Ecol Entomol 22:319–328CrossRefGoogle Scholar
  48. Potts SG, Willmer P (1998) Compact housing in built-up areas: spatial patterning of nests in aggregations of a ground-nesting bee. Ecol Entomol 23:427–432CrossRefGoogle Scholar
  49. Queller DC, Zacchi F, Cervo R, Turillazzi S, Henshaw MT, Santorelli LA, Strassmann JE (2000) Unrelated helpers in a social insect. Nature 405:784–787PubMedCrossRefGoogle Scholar
  50. Rasmussen JL (1994) The influence of horn and body-size on the reproductive behavior of the horned rainbow scarab beetle Phanaeus difformis (Coleoptera, Scarabaeidae). J Insect Behav 7:67–82CrossRefGoogle Scholar
  51. Richards MH (2000) Evidence for geographic variation in colony social organization in an obligately social sweat bee, Lasioglossum malachurum Kirby (Hymenoptera; Halictidae). Can J Zool 78:1259–1266CrossRefGoogle Scholar
  52. Richards MH, Packer L (1996) The socioecology of body size variation in the primitively eusocial sweat bee, Halictus ligatus (Hymenoptera: Halictidae). Oikos 77:68–76CrossRefGoogle Scholar
  53. Richards MH, French D, Paxton RJ (2005) It’s good to be queen: classically eusocial colony structure and low worker fitness in an obligately social sweat bee. Mol Ecol 14:4123–4133PubMedCrossRefGoogle Scholar
  54. Rüppell O, Heinze J (1999) Alternative reproductive tactics in females: the case of size polymorphism in winged ant queens. Insectes Soc 46:6–17CrossRefGoogle Scholar
  55. Rust RW (1991) Size-weight relationships in Osmia lignaria propinqua Cresson (Hymenoptera, Megachilidae). J Kans Entomol Soc 64:174–178Google Scholar
  56. Sakagami S (1974) Sozialstruktur und Polymorphismus bei Furchen- und Schmalbienen (Halictinae). In: Schmidt GH (ed) Sozialpolymorphismus bei Insekten. Wissensch. Verlagsgesellschaft mbH, Stuttgart, pp 257–293Google Scholar
  57. Sakagami S, Michener C (1962) The nest architecture of the sweat bees (Halictinae). A comparative study of behaviour. The University of Kansas Press, Lawrence, KansasGoogle Scholar
  58. Smith BH, Weller C (1989) Social competition among gynes in Halictine bees—the influence of bee size and pheromones on behavior. J Insect Behav 2:397–411CrossRefGoogle Scholar
  59. Soucy SL (2002) Nesting biology and socially polymorphic behavior of the sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Ann Entomol Soc Am 95:57–65CrossRefGoogle Scholar
  60. Stark RE (1992) Cooperative nesting in the multivoltine large carpenter bee Xylocopa sulcatipes Maa (Apoidea, Anthophoridae)—do helpers gain or lose to solitary females? Ethology 91:301–310CrossRefGoogle Scholar
  61. Stöckhert E (1925) Über Entwicklung und Lebensweise der Bienengattung Halictus Latr. und ihrer Schmarotzer (Hym.). Konowia 2:48–64, 146–165Google Scholar
  62. Strassmann JE (1989) Altruism and relatedness at colony foundation in social insects. Trends Ecol Evol 4:371–374CrossRefGoogle Scholar
  63. Strassmann JE (1991) Costs and benefits of colony aggregation in the social wasp, Polistes annularis. Behav Ecol 2:204–209Google Scholar
  64. Strohm E, Bordon-Hauser A (2003) Advantages and disadvantages of large colony size in a halictid bee: the queen’s perspective. Behav Ecol 14:546–553CrossRefGoogle Scholar
  65. Sugiura N (1991) Male territoriality and mating tactics in the wool-carder bee, Anthidium septemspinosum Lepeletier (Hymenoptera, Megachilidae). J Ethol 9:95–103CrossRefGoogle Scholar
  66. Tepedino VJ, Torchio PF (1994) Founding and usurping—equally efficient paths to nesting success in Osmia lignaria propinqua (Hymenoptera, Megachilidae). Ann Entomol Soc Am 87:946–953Google Scholar
  67. Thornhill R, Alcock J (1983) The evolution of insect mating systems. Harvard University Press, CambridgeGoogle Scholar
  68. Ward SA, Kukuk PF (1998) Context-dependent behavior and the benefits of communal nesting. Am Nat 152:249–263CrossRefPubMedGoogle Scholar
  69. Wilson EO (1971) The insect societies. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  70. Yanega D (1997) Demography and sociality in halictine bees (Hymenoptera: Halictidae). In: Choe JC, Crespi BJ (eds) Social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 293–315Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Zoological InstituteUniversity of TübingenTübingenGermany
  2. 2.School of Biological SciencesQueen’s University BelfastBelfastUK

Personalised recommendations