Do dominants have higher heterozygosity? Social status and genetic variation in brown trout, Salmo trutta

  • Katriina TiiraEmail author
  • Anssi Laurila
  • Katja Enberg
  • Jorma Piironen
  • Sami Aikio
  • Esa Ranta
  • Craig R. R. Primmer
Original Article


A key question of evolutionary importance is what factors influence who becomes dominant. Individual genetic variation has been found to be associated with several fitness traits, including behaviour. Could it also be a factor influencing social dominance? We investigated the association between social status and the amount of intra-individual genetic variation in juvenile brown trout (Salmo trutta). Genetic variation was estimated using 12 microsatellite loci. Dominant individuals had higher mean heterozygosity than subordinates in populations with the longest hatchery background. Heterozygosity–heterozygosity correlations did not find any evidence of inbreeding; however, single-locus analysis revealed four loci that each individually differed significantly between dominant and subordinate fish, thus giving more support to local than general effect as the mechanism behind the observed association between genetic diversity and a fitness-associated trait. We did not find any significant relation between mean d 2 and social status, or internal relatedness and social status. Our results suggest that individual genetic variation can influence dominance relations, but manifestation of this phenomenon may depend on the genetic background of the population.


Dominance status Aggression Microsatellites Heterozygosity Genetic background 



We thank Finnish Game and Fisheries Research for allowing the use of brown trout stocks in this study, and Saimaa Fisheries Research and Aquaculture for excellent working facilities. T. Aho helped in transporting the eggs, and S. Vilhunen assisted in fish maintenance. Special thanks for B. Amos’ aid with calculating the heterozygosity–heterozygosity correlations. J. Höglund, J. Merilä, N. Metcalfe and N. Peuhkuri gave constructive comments on the manuscript. Our research was funded by the Finnish Game and Fisheries Research Institute, the Finnish Ministry of Education (to K.T.) and the Academy of Finland [K.T. (project no. 80705), A.L. (project no. 164206), C.R.P. (project no. 17296), Sami Aikio and E.R. (project no. 162961)]. Fish in this study were handled according to Guidelines for the Use of Animals in Research and according to national legal guidelines.


  1. Acevedo-Whitehouse K, Gulland F, Greig D, Amos W (2003) Disease susceptibility in Californian sea lions. Nature 422:35PubMedCrossRefGoogle Scholar
  2. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693PubMedCrossRefGoogle Scholar
  3. Allendorf FW, Phelps SR (1980) Loss of genetic variation in a hatchery stock of cutthroat trout. Trans Am Fish Soc 109:537–543CrossRefGoogle Scholar
  4. Allison PD (1999) Logistic regression using the SAS system. Theory and application. SAS Institute Inc., Cary, NCGoogle Scholar
  5. Altukhov YP, Salmenkova EA, Omelchenko VT (2000) Salmonid fishes. In: Carvalho GR, Thorpe JE (eds) Population biology, genetics and management (English translation). Blackwell, OxfordGoogle Scholar
  6. Amos W, Worthington-Wilmer J, Fullard K, Burg TM, Croxall JP, Bloch D, Coulson T (2001) The influence of parental relatedness on reproductive success. Proc R Soc Lond B 268:2021–2027CrossRefGoogle Scholar
  7. Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New YorkGoogle Scholar
  8. Bailey J, Alanärä A, Brännäs E (2000) Methods for assessing social status in Arctic charr. J Fish Biol 57:258–261CrossRefGoogle Scholar
  9. Balloux F, Amos W, Coulson T (2004) Does inbreeding estimate heterozygosity in real populations? Mol Ecol 13:3021–3031PubMedCrossRefGoogle Scholar
  10. Bean K, Amos W, Pomeroy PP, Twiss D, Coulson TN, Boyd IL (2004) Patterns of parental relatedness and pup survival in the grey seal (Halichoerus grypus). Mol Ecol 13:2365–2370PubMedCrossRefGoogle Scholar
  11. Bierne N, Launey S, Naciri-Graven Y, Bonhomme F (1998) Early effects of inbreeding as revealed by microsatellite analysed on Ostrea edulis larvae. Genetics 148:1893–1906PubMedGoogle Scholar
  12. Borrell YJ, Pineda H, McCarthy I, Vázquez, Sánchez JA, Lizana GB (2004) Correlations between fitness and heterozygosity at allozyme and microsatellite loci in the Atlantic salmon, Salmo salar L. Heredity 92:585–593PubMedCrossRefGoogle Scholar
  13. Cairney M, Taggart JB, Hoyheim B (2000) Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Mol Ecol 9:2175–2178PubMedCrossRefGoogle Scholar
  14. Charlesworth D (1991) The apparent selection on neutral marker loci in partially inbreeding populations. Genet Res 57:159–175CrossRefGoogle Scholar
  15. Clutton-Brock TH, Albon SD, Guinness FE (1986) Great expectations: dominance, breeding success and offspring se ratios in red deer. Anim Behav 34:460–471CrossRefGoogle Scholar
  16. Coltman DW, Bowen W, Wright JM (1998) Birth weight and neontal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. Proc R Soc Lond B 265:803–809CrossRefGoogle Scholar
  17. Coulson TN, Pemberton JM, Albon SD, Beaumont M, Marshall TC, Slate J, Guinnes FE, Glutton-Brock TH (1998) Microsatellites reveal heterosis in red deer. Proc R Soc Lond B 265:489–495CrossRefGoogle Scholar
  18. Coulson TN, Albon SD, Slate J, Pemberton JM (1999) Microsatellites loci reveal sex-dependent responses to inbreeding and outbreeding in red deer calves. Evolution 53:1951–1960CrossRefGoogle Scholar
  19. Crozier WW (1998) Genetic implications of hatchery rearing in Atlantic salmon: effects of rearing environment on genetic composition. J Fish Biol 52:1014–1025CrossRefGoogle Scholar
  20. Cutts CJ, Metcalfe NB, Taylor AC (1998) Aggression and growth depression in juvenile Atlantic salmon: the consequences of individual variation in standard metabolic rate. J Fish Biol 52:1026–1037CrossRefGoogle Scholar
  21. David P, Delay B, Berthou P, Jarne P (1995) Alternative models for allozyme-associated heterosis in the marine bivalve Spisula ovalis. Genetics 139:1719–1726PubMedGoogle Scholar
  22. Eklund A (1996) The effects of inbreeding on aggression in wild male house mice (Mus domesticus). Behaviour 133:883–901Google Scholar
  23. Elliott JM (1994) Quantitative ecology and the brown trout. Oxford University Press, OxfordGoogle Scholar
  24. Estoup A, Presa P, Krieg F, Vaiman D, Guyomard R (1993) (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71:488–496PubMedGoogle Scholar
  25. Estoup A, Rousset F, Michalakis Y, Cornuet J-M, Adriamanga M, Guyomard R (1998) Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol Ecol 7:339–353PubMedCrossRefGoogle Scholar
  26. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge, UKGoogle Scholar
  27. Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  28. Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474PubMedCrossRefGoogle Scholar
  29. Hansson B, Westerdahl H, Hasselquist D, Åkesson M, Bensch S (2004) Does linkage disequilibrium generate heterozygosity-fitness correlations in great reed warblers. Evolution 58:870–879PubMedGoogle Scholar
  30. Hedrick P, Fredrickson R, Ellegren H (2001) Evaluation of d2, a microsatellite measure of inbreeding and outbreeding, in wolves with a known pedigree. Evolution 55:1256–1260PubMedGoogle Scholar
  31. Holtby LB, Swain DP, Allan GM (1993) Mirror-elicited agonistic behaviour and body morphology as predictors of dominance status in juvenile coho salmon (Oncorhycnhus kisutch). Can J Fish Aquat Sci 50:676–684Google Scholar
  32. Huntingford FA, Turner AK (1987) Animal conflict. Chapman and Hall, LondonGoogle Scholar
  33. Höglund J, Piertney SB, Alatalo R, Lindell J, Lundberg A, Rintamäki PT (2002) Inbreeding and male fitness in a wild population. Proc R Soc Lond B 269:711–715CrossRefGoogle Scholar
  34. Höjesjö J, Johnsson JI, Bohlin T (2002) Can laboratory studies on dominance predict fitness of young brown trout in the wild? Behav Ecol Sociobiol 52:102–108CrossRefGoogle Scholar
  35. Lahti K, Laurila A, Enberg K, Piironen J (2001) Variation in aggressive behaviour among populations and migration forms in brown trout (Salmo trutta). Anim Behav 62:935–944CrossRefGoogle Scholar
  36. Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS System for mixed models. SAS Institute, Cary, NCGoogle Scholar
  37. Maynard Smith J (1956) Fertility, mating behaviour and sexual selection in Drosophila subobscura. J Genet 54:261–279Google Scholar
  38. Meagher S, Penn DJ, Potts WK (2000) Male–male competition magnifies inbreeding depression in wild house mice. Proc Natl Acad Sci U S A 97:3324–3329PubMedCrossRefGoogle Scholar
  39. Metcalfe NB (1998) The interaction between behaviour and physiology in determining the life history patterns in Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 55:93–103CrossRefGoogle Scholar
  40. Metcalfe NB, Huntingford FA, Graham WD, Thorpe JE (1989) Early social status and the development of life-history strategies in Atlantic salmon. Proc R Soc Lond B 236:7–19PubMedGoogle Scholar
  41. Metcalfe NB, Huntingford FA, Thorpe JE, Adams CE (1990) The effects of social status on life history variation in juvenile salmon. Can J Fish Aquat Sci 68:2630–2636Google Scholar
  42. Metcalfe NB, Taylor AC, Thorpe JE (1995) Metabolic rate, social status and life-history strategies in Atlantic salmon. Anim Behav 49:431–436CrossRefGoogle Scholar
  43. Nakano S (1995) Individual differences in resource use, growth and emigration under the influence of a dominance hierarchy in fluvial red-spotted masu salmon in a natural habitat. J Anim Ecol 64:75–84CrossRefGoogle Scholar
  44. Nielsen JL (1998) Population genetics and the conservation and management of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 55(suppl 1):145–152CrossRefGoogle Scholar
  45. O’Reilly PT, Hamilton LC, McConnell SK, Wright JM (1996) Rapid detection of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can J Fish Aquat Sci 53:2292–2298CrossRefGoogle Scholar
  46. Pemberton JM (2004) Measuring inbreeding depression in the wild: the old ways are the best. Trends Ecol Evol 19:613–615PubMedCrossRefGoogle Scholar
  47. Pemberton JM, Coltman DW, Coulson TN, Slate J (1999) Using microsatellites to measure the fitness consequences of inbreeding and outbreeding. In: Goldstein DB, Schlötterer C (eds) Microsatellites. Evolution and applications. Oxford University Press, Oxford, pp 151–164Google Scholar
  48. Poteaux C (1995) Interactions génétiques entre formes sauvages et formes domestiques chez la truite commune (Salmo trutta fario L.) Ph.D. thesis, Université Montpellier II, MontpellierGoogle Scholar
  49. Presa P, Guyomard R (1996) Conservation of microsatellites in three species of salmonids. J Fish Biol 49:1326–1329Google Scholar
  50. Primmer CR, Aho T, Piironen J, Estoup A, Cornuet J-M, Ranta E (1999) Microsatellite analysis of hatchery stocks and natural populations of Arctic charr, Salvelinus alpinus, from the Nordic region: implications for conservation. Hereditas 130:227–289CrossRefGoogle Scholar
  51. Pusey A, Williams J, Goodall J (1997) The influence of dominance rank on the reproductive success of female chimpanzees. Science 277:828–831PubMedCrossRefGoogle Scholar
  52. Rossiter SJ, Jones G, Ransome RD, Barrath EM (2001) Outbreeding increases offspring survival in wild greater horseshoe bats (Rhinolophus ferrumequinum). Proc R Soc Lond B 268:1055–1061CrossRefGoogle Scholar
  53. Ryman N, Ståhl G (1980) Genetic changes in hatchery stocks of brown trout (Salmo trutta). Can J Fish Aquat Sci 37:82–87CrossRefGoogle Scholar
  54. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494CrossRefGoogle Scholar
  55. Scribner KT, Gust JR, Fields RL (1996) Isolation and characterisation of novel salmon microsatellite loci: cross-species amplification and population genetic applications. Can J Fish Aquat Sci 53:833–841CrossRefGoogle Scholar
  56. Slate J, Pemberton JM (2002) Comparing molecular measures for detecting inbreeding depression. J Evol Biol 15:20–31CrossRefGoogle Scholar
  57. Slate J, Kruuk LEB, Markshall TC, Pemberton JM, Clutton-Brock TH (2000) Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc R Soc Lond B 267:1657–1662CrossRefGoogle Scholar
  58. Slettan AI, Olsaker I, Lie Ø (1995) Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Anim Genet 26:281–282PubMedGoogle Scholar
  59. Tiira K, Laurila A, Peuhkuri N, Piironen J, Ranta E, Primmer CR (2003) Aggressiveness is associated with genetic diversity in landlocked salmon (Salmo salar). Mol Ecol 12:2399–2407PubMedCrossRefGoogle Scholar
  60. Tsitrone A, Rousset F, David P (2001) Heterosis, marker mutational processes and population inbreeding history. Genetics 159:1845–1859PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Katriina Tiira
    • 1
    Email author
  • Anssi Laurila
    • 1
  • Katja Enberg
    • 2
  • Jorma Piironen
    • 3
  • Sami Aikio
    • 1
  • Esa Ranta
    • 1
  • Craig R. R. Primmer
    • 4
  1. 1.Department of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland
  3. 3.Joensuu Game and Fisheries ResearchYliopistonkatu 6JoensuuFinland
  4. 4.Department of BiologyUniversity of TurkuTurkuFinland

Personalised recommendations