Behavioral Ecology and Sociobiology

, Volume 59, Issue 1, pp 101–107 | Cite as

Cooperative prey capture by young subsocial spiders: II. Behavioral mechanism

  • Kil Won Kim
  • Bertrand Krafft
  • Jae Chun ChoeEmail author
Original Article


Subsocial spiders demonstrate an intermediate stage in the evolution of permanent sociality. Cooperative hunting is an important attribute of their sociality, but has not been documented in subsocial arthropods. After cannibalizing their mother, young of the subsocial spider Amaurobius ferox (Araneae, Amaurobiidae) remain together for several instars and feed communally. We monitored the collective prey capture behavior of the spiderlings. All the clutches showed collective capturing sequence (latency–orientation–moving–touching–seizing–feeding) toward the prey that was 10 times more massive than each individual. The first three individuals that exhibited attacking behavior were responsible for 90% of the total number of attacks, while 68% of the individuals within the group never exhibited attacks during the first 10 min following the introduction of prey into the communal web. First arriving individuals at the prey most often seized the antennae and legs of the prey, which probably facilitate access to the prey for subsequent individuals. The spiderlings that arrived later occupied more likely the abdomen and thorax, which contain more nutrition than the extremities occupied earlier. The individual apportionment of collective hunting behavior suggests a coordinated teamwork among individuals.


Cooperative prey capture Subsocial spider Behavioral mechanism Amaurobius ferox 



We are grateful to André Horel and Chantal Roland for their advice and experimental help. We also thank Deborah Smith, Robert Srygley, William Eberhard, and Joonghwan Jeon for proving invaluable comments on earlier drafts. This work was supported in part by BK21 Research Fellowship from the Ministry ofEducation and Human Resources Development of Korea. This work complied with the current laws of France


  1. Amir N, Whitehouse MEA, Lubin Y (2000) Food consumption rates and competition in a communally feeding social spider, Stegopdyphus dumicola (Eresidae). J Arachnol 28:195–200CrossRefGoogle Scholar
  2. Avilés L (1997) Cause and consequences of cooperation and permanent-sociality in spiders. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 476–498Google Scholar
  3. Boesch C (1994) Cooperative hunting in wild chimpanzees. Anim Behav 48:653–667CrossRefGoogle Scholar
  4. Brach V (1975) The biology of the social spider Anelosimus eximius (Araneae: Theridiidae). Bull Soc Calif Acad Sci 74:37–41Google Scholar
  5. Bradoo BL (1980) Feeding behaviour and recruitment display in the social spider Stegodyphus sarasinorum Karsch (Araneae, Eresidae). Tijds Entomol 123:89–104Google Scholar
  6. Bristowe WS (1958) The world of spiders. Collins, LondonGoogle Scholar
  7. Buskirk RE (1981) Sociality in the Arachnida. In: Hermann HR (ed) Social insects, vol II. Academic Press, New York, pp 281–367Google Scholar
  8. Cloudsley-Thompson JL (1955) The life histories of the British cribellate spiders of the genus Ciniflo BL (Dictynidae). Ann Mag Nat Hist 12:787–794Google Scholar
  9. Crespi BJ, Choe, JC (1997) Explanation and evolution of social systems. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 499–524Google Scholar
  10. D'Andréa M (1987) Social behaviour in spiders (Arachnida, Araneae). Ital J Zool (Monitore zoologico italiano) N S Monogr, pp 151Google Scholar
  11. Decae AE (1987) Dispersal: ballooning and other mechanisms. In: Nentwig W (ed) Ecophysiology of spiders. Springer Verlag, Berlin, pp 348–356Google Scholar
  12. Dugatkin LA (1997) Cooperation among animals, an evolutionary perspective. Oxford University Press, New YorkGoogle Scholar
  13. Eberhard WG. (1986) Subsocial behavior in the spitting spider Scytodes intricate (Araneae, Scytodidae). Rev Arachnol 7:35–40Google Scholar
  14. Evans TA (1998) Factors influencing the evolution of social behaviour in Australian crab spiders (Araneae: Thomisidae). Biol J Linnean Soc 63:205–219CrossRefGoogle Scholar
  15. Fœlix RF (1996) Biology of spiders. Oxford University Press, New YorkGoogle Scholar
  16. Gundermann JL, Horel A, Krafft B (1993) Experimental manipulations of social tendencies in the subsocial spider Cœlotes terrestris. Inst Soc 40:219–229CrossRefGoogle Scholar
  17. Gundermann JL, Horel A, Roland C (1991) Mother–offspring food transfer in Coelotes terrestris (Araneae, Agelenidae). J Arachnol 19:97–101Google Scholar
  18. Horel A, Krafft B, Aron S (1996) Processus de la socialisation et préadaptation comportementales chez les Araignées sociales. Bull Soc Zool Fr 121:31–37Google Scholar
  19. Ito C (1985) Brood-care behavior in Theridion japonicum observed at a laboratory. Acta Arachnol 34:23–30CrossRefGoogle Scholar
  20. Johannesen J, Lubin Y (1999) Group founding and breeding structure in the subsocial spider Stegodyphus lineatus (Eresidae). Heredity 82:677–686CrossRefPubMedGoogle Scholar
  21. Kaston BJ (1965) Some little known aspects of spider behavior. Am Midl Nat 73:336–356CrossRefGoogle Scholar
  22. Kim KW, Horel A (1998) Matriphagy in the spider Amaurobius ferox (Araneidae, Amaurobiidae): an example of mother–offspring interactions. Ethology 104:1021–1037Google Scholar
  23. Kim KW, Roland C (2000) Trophic egg-layng in the spider Amaurobius ferox: mother–offspring interactions and functional value. Behav Proc 50:31–42CrossRefGoogle Scholar
  24. Kim KW (1998) L'organization subsociale d'Amaurobius ferox: modèle pour l'étude des phénomènes sociaux chez les araignees. PhD Thesis, Université Nancy I, FranceGoogle Scholar
  25. Kim KW (2000) Dispersal behaviour in a subsocial spider: group conflict and the effect of food availability. Behav Ecol Sociobiol 48:182–187CrossRefGoogle Scholar
  26. Kim KW (2001) Social facilitation of synchronized molting behavior in the spider Amaurobius ferox (Araneae, Amaurobiidae). J Inst Behav 14:401–410CrossRefGoogle Scholar
  27. Kim KW, Krafft B, Choe JC (2005) Cooperative prey capture by young subsocial spiders: I. Functional value. Behav Ecol SociobiolGoogle Scholar
  28. Krafft B, Pasquet A (1991) Synchronized and rhythmical activity during the prey capture in the social spider Anelosimus eximius (Araneae, Theridiidae). Inst Soc 38:83–90CrossRefGoogle Scholar
  29. Krafft B (1979) Organisation et evolution des sociétés d'araignées. J Psychol 1:23–51Google Scholar
  30. Kullmann E (1972) Evolution of social behavior in spiders (Araneae, Eresidae and Theridiidae). Am Zool 12:419–426Google Scholar
  31. Lemasle A (1977) Etude préliminaire á la biologie et á éthologie des araignées du genre Amaurobius. PhD Thesis, Université Nancy I, FranceGoogle Scholar
  32. Main BY (1971) The common colonial spider Ixeuticus candidus (Koch) and its synonyms (Dictynidae, Araneae). J R Soc West Aust 54:119–120Google Scholar
  33. Michener CD (1969) Comparative social behavior in bees. Ann Rev Entomol 14:299–342CrossRefGoogle Scholar
  34. Opell BD (1994) The ability of spider cribellate prey capture thread to hold insects with different surface features. Funct Ecol 8:145–150CrossRefGoogle Scholar
  35. Packer C, Ruttan L (1988) The evolution of cooperative hunting. Am Nat 132:159–198CrossRefGoogle Scholar
  36. Pasquet A, Krafft B (1992) Cooperation and prey capture efficiency in a social spider, Anelosimus eximius (Araneae, Theridiidae). Ethology 90:121–133CrossRefGoogle Scholar
  37. Plateaux-Quénu C, Horel A, Roland C (1997) A reflection on social evolution in two different groups of arthropods: halictine bees (Hymenoptera) and spiders (Arachnida). Ethol Ecol Evol 9:183–196Google Scholar
  38. Pollard SD (1989) Constraints affecting partial prey consumption by a crab spider, Diaea sp. indet. (Araneae: Thomisidae). Oecologia 81:392–396Google Scholar
  39. Robinson MH (1969) Predatory behaviour of Argiope argentata (Fabricius). Am Zool 9:161–173Google Scholar
  40. Ruttan LM (1990) Experimental manipulations of dispersal in the subsocial spider, Theridion pictum. Behav Ecol Sociobiol 27:169–173CrossRefGoogle Scholar
  41. Saffre F, Krafft B, Deneubourg JL (1997) What are the mechanisms involved in the emergence of cooperativity? The spider model. In: Theraulaz G., Spitz F (eds) Auto-organisation et comportement. Hermès, ParisGoogle Scholar
  42. Saffre F, Mailleux A, Deneubourg JL (2000) Exploratory recruitment plasticity in a social spider (Anelosimus eximius). J Theor Biol 205:37–46CrossRefPubMedGoogle Scholar
  43. Schneider JM (1996) Food intake, growth and relatedness in the subsocial spider, Stegodyphus lineatus (Eresidae). Ethology 102:386–396CrossRefGoogle Scholar
  44. Shear WA (1970) The evolution of social phenomena in spiders. Bull Br Arachnol Soc 1:65–77Google Scholar
  45. Strickman D, Sithiprasasna R, Southard D (1997) Bionomics of the spider, Crossopriza lyoni (Araneae, Pholcidae), a predator of dengue vectors in Thailand. Thail J Arachnol 25:194–201Google Scholar
  46. Suhm M, Thaler K, Alberti G (1996) Glands in the male palpal organ and the origin of the mating plug in Amaurobius species (Araneae: Amaurobiidae). Zool Anz 234:191–199Google Scholar
  47. Tahiri A, Horel A, Krafft B (1989) Etude préliminaire sur les interactions mère-jeunes et jeunes-jeunes chez deux espèces d'Amaurobius (Araneae, Amaurobiidae). Rev Arachnol 8:115–128Google Scholar
  48. Theraulaz G., Bonabeau E, Deneubourg JL (1999) The mechanism and rules of coordinated building in social insects. In: Detrain C, Deneubourg JL, Pasteels JM (eds) Information processing in social insects. Birkhauser Verlag, Basel, pp 309–330Google Scholar
  49. Tietjen WJ (1986) Social spider webs, with special references to the web of Mallos gregalis. In: Shear WA (ed) Spiders—webs, behavior and evolution. Stanford University Press, pp 172–206Google Scholar
  50. Tretzel E (1961) Biologie, Oekologie und Brutpflege von Cœlotes terrestris (Wider) (Araneae, Agelenidae) II. Brutpflege Z Morphol Oekol Tiere 50:375–542CrossRefGoogle Scholar
  51. Vakanas G., Krafft B (2001) Coordination of behavioral sequences between individuals during prey capture in a social spider, Anelosimus eximius. J Inst Behav 14:777–798CrossRefGoogle Scholar
  52. Ward P, Enders MM (1985) Conflict and cooperation in the group feeding of the social spider Stegodyphus mimosarum. Behaviour 94:167–183CrossRefGoogle Scholar
  53. Whitehouse MEA, Jackson RR (1998) Predatory behaviour and parental care in Argyrodes flavipes, a social spider from Queensland. J Zool 244:95–105CrossRefGoogle Scholar
  54. Whitehouse MEA, Lubin Y (1999) Competitive foraging in the social spider Stegodyphus dumicola. Anim Behav 58:677–688CrossRefPubMedGoogle Scholar
  55. Willey MB, Jackson, RR (1993) Predatory behavior of a social spider, Stegodyphus sarasinorum (Araneae: Eresidae): Why attack first? Can J Zool 71:2220–2223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratory of Behavior and Ecology, School of Biological SciencesSeoul National UniversitySeoulKorea
  2. 2.Laboratoire de Biologie et Physiologie du ComportementUniversité Nancy IVandoeuvre-lès-Nancy CedexFrance

Personalised recommendations