Behavioral Ecology and Sociobiology

, Volume 54, Issue 6, pp 562–572 | Cite as

Orientation behavior of homing pigeons at the Gernsheim anomaly

  • Roswitha WiltschkoEmail author
  • Wolfgang Wiltschko
Original Article


Pigeons were released at four release sites within the Gernsheim anomaly, a magnetic 'hill' with a peak 199 nT above the regional reference field and gentle 'slopes' to all sides, situated 44 km south of the Frankfurt loft. Local magnetic conditions at the sites differed in total intensity and in direction and steepness of the intensity gradient. At all sites, the pigeons were well oriented, showing counterclockwise deviations from the home directions that were most pronounced in the western part of the anomaly. There was no systematic difference in orientation behavior or homing performance between the sites within the anomaly and a control site outside. No effect of the local gradient direction was found, nor did the difference in intensity between home loft and the release site affect behavior. This argues against the use of magnetic navigational factors. However, pigeons released for the first time within the anomaly tended to have longer mean vectors with increasingly steeper gradients, which could mean that the birds might somehow have realized the anomalous nature of the local magnetic conditions and ignored them, relying on non-magnetic cues instead.


Geomagnetic field Homing pigeons Magnetic anomaly Navigation Release site bias 



Our work was supported by the Deutsche Forschungsgemeinschaft. We sincerely thank R. Blum, Hessisches Landesamt für Bodenforschung, Wiesbaden, and A. Junge, Geophysik der Unversität Frankfurt, for their valuable help with obtaining the magnetic data of the area, and C. Becker, M. Geil, O. Henseler, W. Raabe, T. Ruch, M. Szczepanski, P. Thalau and D. Zeller with releasing the pigeons. The experiments were performed in accordance with the rules and regulations of Germany.


  1. Batschelet, E. (1981) Circular statistics in biology. Academic Press, New YorkGoogle Scholar
  2. Beason RC, Wiltschko R, Wiltschko W (1997) Pigeon homing: effects of magnetic pulses on initial orientation. Auk 114:405–415Google Scholar
  3. Blum R (1996) Das internationale geomagnetische Referenzfeld (IGRF 1995) in Hessen für 1998.0 und 1999.0 in 300 m ü. NN. Geol Jb Hessen 124:215–218Google Scholar
  4. Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 421:60–63CrossRefPubMedGoogle Scholar
  5. Bundesanstalt für Geowissenschaften und Rohstoffe (1976) Anomalien der erdmagnetischen Totalintensität in der Bundesrepublik Deutschland, sheets 121, 131. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, GermanyGoogle Scholar
  6. Casamajor J (1927) Le mysterieux "sens de l'espace". Rev Sci 65:554–565Google Scholar
  7. Chelazzi G, Pardi L (1972) Experiments on the homing behavior of caged pigeons. Monit Zool Ital (NS) 13:105–127Google Scholar
  8. Fischer JH, Freake MJ, Borland SC, Phillips JB (2001) Evidence for the use of magnetic map information by an amphibian. Anim Behav 62:1–10CrossRefGoogle Scholar
  9. Frei U, Wagner G (1976) Die Anfangsorientierung von Brieftauben im erdmagnetisch gestörten Gebiet des Mont Jorat. Rev Suisse Zool 83:891–897Google Scholar
  10. Gould JL (1982) The map sense of pigeons. Nature 296:205–211Google Scholar
  11. Grüter M, Wiltschko R, Wiltschko W (1982) Distribution of release-site biases around Frankfurt a.M., Germany. In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin Heidelberg New York, pp 222–231Google Scholar
  12. Keeton WT (1973) Release site bias as a possible guide to the 'map' component in pigeon homing. J Comp Physiol 86:1–16Google Scholar
  13. Keeton WT, Larkin TS, Windsor DM (1974) Normal fluctuations in the earth's magnetic field influence pigeon orientation. J Comp Physiol 95:95–103Google Scholar
  14. Kiepenheuer J (1982) The effect of magnetic anomalies on the homing behaviour of pigeons. In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin Heidelberg New York, pp 120–128Google Scholar
  15. Kiepenheuer J (1986) The effect of magnetic anomalies on the homing behaviour of pigeons: an attempt to analyse the possible factors involved. In: Maret G, Boccara N, Kiepenheuer J (eds) Biophysical effects of steady magnetic fields. Springer, Berlin Heidelberg New York, pp 148–153Google Scholar
  16. Kowalski U (1994) Das Richtungsverhalten verfrachteter Brieftauben (Columba livia) im Orientierungskäfig. J Ornithol 135:17–35Google Scholar
  17. Kowalski U, Wiltschko R (1987) Pigeon homing: familiarity with the release site reduces the release site bias. J Exp Biol 133:457–462PubMedGoogle Scholar
  18. Kowalski U, Wiltschko R, Füller E (1988) Normal fluctuations of the geomagnetic field may affect initial orientation in pigeons. J Comp Physiol 163:593–600Google Scholar
  19. Kramer G (1953) Wird die Sonnenhöhe bei der Heimfindeorientierung verwertet? J Ornithol 94:201–219Google Scholar
  20. Kramer G (1957) Experiments on bird orientation and their interpretation. Ibis 99:196–227Google Scholar
  21. Lednor AJ (1982) Magnetic navigation in pigeons: possibilities and problems. In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin Heidelberg New York, pp 109–119Google Scholar
  22. Lednor AJ, Walcott C (1988) Orientation of homing pigeons at magnetic anomalies: the effect of experience. Behav Ecol Sociobiol 22:3–8Google Scholar
  23. Lohmann KJ, Cain SD, Dodge SA, Lohmann CMF (2001) Regional magnetic field as navigational markers for sea turtles. Science 294:364–366PubMedGoogle Scholar
  24. Mazzotto M, Nacci L, Gagliardo A (1999) Homeward orientation of pigeons confined in a circular arena. Behav Proc 46:217–225CrossRefGoogle Scholar
  25. Phillips JB (1986) Magnetic compass orientation in the eastern red-spotted newt (Notophthalmus viridescens). J Comp Physiol A 158:103–109PubMedGoogle Scholar
  26. Phillips JB, Freake MJ, Fischer JH, Borland SC (2002) Behavioral titration of a magnetic map coordinate. J Comp Physiol A 188:157–160CrossRefGoogle Scholar
  27. Reilly WI (2002) Magnetic position determination by homing pigeons? J Theor Biol 218:47–54Google Scholar
  28. Rodda GH (1984) The orientation and navigation of juvenile alligators: evidence of magnetic sensitivity. J Comp Physiol A 154:649–658Google Scholar
  29. Semm P, Beason RC (1990) Responses to small magnetic variations by the trigeminal system of the bobolink. Brain Res Bull 25:735–740CrossRefPubMedGoogle Scholar
  30. Viguier C (1882) Le sens de l'orientation et ses organes chez les animaux et chez l'homme. Rev Philosophique France Etranger 14:1–36Google Scholar
  31. Wagner G (1976) Das Orientierungsverhalten von Brieftauben im erdmagnetisch gestörten Gebiet des Chasseral. Rev Suisse Zool 83:883–890Google Scholar
  32. Wagner G (1983) Natural geomagnetic anomalies and homing in pigeons. Comp Biochem Physiol 76A:691–701CrossRefGoogle Scholar
  33. Walcott C (1978) Anomalies in the earth's magnetic field increase the scatter of pigeons' vanishing bearings. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation, and homing. Springer, Berlin Heidelberg New York, pp 143–151Google Scholar
  34. Walcott C (1982) Is there evidence for a magnetic map in homing pigeons? In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin Heidelberg New York, pp 99–108Google Scholar
  35. Walker MM (1998) On a wing and a vector: a model for magnetic navigation by homing pigeons. J Theor Biol 192:341–349CrossRefPubMedGoogle Scholar
  36. Wallraff HG (1974) Das Navigationssystem der Vögel. Ein theoretischer Beitrag zur Analyse ungeklärter Orientierungsleistungen bei Vögeln. Oldenbourg, MunichGoogle Scholar
  37. Wallraff HG (1999) The magnetic 'map' of homing pigeons: an evergreen phantom. J Theor Biol 197:265–269CrossRefPubMedGoogle Scholar
  38. Wiltschko R (1991) The role of experience in avian navigation and homing. In: Berthold P (ed) Orientation in birds. Birkhäuser, Basel, pp 250–269Google Scholar
  39. Wiltschko R (1992) Das Verhalten verfrachteter Vögel. Vogelwarte 36:249–310Google Scholar
  40. Wiltschko R, Wiltschko W (1985a) Pigeon homing: change in navigational strategy during ontogeny. Anim Behav 33:583–590Google Scholar
  41. Wiltschko R, Wiltschko W (1985b) Pigeon homing:can release site bias be explained by a 'preferred compass direction'? Monit Zool Ital 19:197–206Google Scholar
  42. Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Springer, Berlin Heidelberg New YorkGoogle Scholar
  43. Wiltschko R, Wiltschko W (1999) Compass orientation as a basic element in avian orientation and navigation. In: Golledge RG (ed.) Wayfinding: cognitive maps in spatial behavior Johns Hopkins University Press, Baltimore, Md., pp 259–293Google Scholar
  44. Wiltschko R, Wiltschko W (2003) Avian navigation: from historical to modern concepts. Anim Behav 65:257–272CrossRefGoogle Scholar
  45. Wiltschko W, Nohr D, Füller E, Wiltschko R (1986) Pigeon homing: the use of magnetic information in position finding. In: Maret G, Boccara N, Kiepenheuer J (eds) Biophysical effects of steady magnetic fields. Springer, Berlin Heidelberg New York, pp 154–162Google Scholar
  46. Yeagley HL (1947) A preliminary study of a physical basis of bird navigation. J Appl Phys 18:1035–1063Google Scholar
  47. Yeagley HL (1951) A preliminary study of a physical basis of bird navigation. J Appl Phys 22:746–760Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Fachbereich Biologie und InformatikJ.W.Goethe-Universität Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations