Skip to main content

Advertisement

Log in

Subscapularis impairment on magnetic resonance imaging is correlated with functional limitations in neonatal brachial plexus palsy

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The relationship between functional shoulder deficits in children with neonatal brachial plexus palsy (NBPP) and magnetic resonance imaging (MRI) shoulder abnormalities was evaluated.

Methods

Shoulder function was assessed in 16 children (mean age: 5.8 years; range: 3–12 years) with NBPP based on shoulder rotator muscle strength, as measured using an isokinetic dynamometer and the modified Mallet score. The thickness and fatty infiltration of the subscapularis and infraspinatus muscles, and the morphology of the glenoid on MRI, were also determined.

Results

The highest subscapularis fatty infiltration subgroup of NBPP patients promoted the highest alteration muscle thickness and modified Mallet score.

Conclusions

In NBPP children, subscapularis impairments play a major role in the functional limitations. This study of pediatric NBPP patients highlighted the value of adding an examination of the muscles to routine MRI assessment of bone parameters in the shoulders of NBPP children.

Trial registration

NCT03440658.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the data of this study are provided in the tables of this publication.

References

  1. Abid A (2016) Brachial plexus birth palsy: management during the first year of life. Orthop Traumatol Surg Res 102:S125-132. https://doi.org/10.1016/j.otsr.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  2. Zafeiriou DI, Psychogiou K (2008) Obstetrical brachial plexus palsy. Pediatr Neurol 38:235–242. https://doi.org/10.1016/j.pediatrneurol.2007.09.013

    Article  PubMed  Google Scholar 

  3. Narakas AO (1987) Injuries of the brachial plexus and neighboring peripheral nerves in vertebral fractures and other trauma of the cervical spine. Orthopade 16:81–86

    CAS  PubMed  Google Scholar 

  4. Abzug JM, Chafetz RS, Gaughan JP et al (2010) Shoulder function after medial approach and derotational humeral osteotomy in patients with brachial plexus birth palsy. J Pediatr Orthop 30:469–474. https://doi.org/10.1097/BPO.0b013e3181df8604

    Article  PubMed  Google Scholar 

  5. Olofsson PN, Chu A, McGrath AM (2019) The pathogenesis of glenohumeral deformity and contracture formation in obstetric brachial plexus palsy—a review. J Brachial Plex Peripher Nerve Inj 14:e24–e34. https://doi.org/10.1055/s-0039-1692420

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kasper JC, Itamura JM, Tibone JE et al (2008) Human cadaveric study of subscapularis muscle innervation and guidelines to prevent denervation. J Shoulder Elbow Surg 17:659–662. https://doi.org/10.1016/j.jse.2007.11.013

    Article  PubMed  Google Scholar 

  7. Allard R, Fitoussi F, Azarpira MR et al (2021) Shoulder internal rotation contracture in brachial plexus birth injury: proximal or distal subscapularis release? J Shoulder Elbow Surg 30:117–1127. https://doi.org/10.1016/j.jse.2020.08.001

    Article  Google Scholar 

  8. Gilbert A, Brockman R, Carlioz H (1991) Surgical treatment of brachial plexus birth palsy. Clin Orthop Relat Res:39–47

  9. Cohen G, Rampal V, Aubart-Cohen F et al (2010) Brachial plexus birth palsy shoulder deformity treatment using subscapularis release combined to tendons transfer. Ortho Traumatol Surg Res 96:334–339

    Article  CAS  Google Scholar 

  10. Fleckenstein JL, Watumull D, Conner KE et al (1993) Denervated human skeletal muscle: MR imaging evaluation. Radiology 187:213–218. https://doi.org/10.1148/radiology.187.1.8451416

    Article  CAS  PubMed  Google Scholar 

  11. Chauvin NA, Jaimes C, Laor T, Jaramillo D (2012) Magnetic resonance imaging of the pediatric shoulder. Magn Reson Imaging Clin N Am 20(327–347). https://doi.org/10.1016/j.mric.2012.01.009

    Article  PubMed  Google Scholar 

  12. Nath RK, Paizi M, Melcher SE, Farina KL (2007) Upright MRI of glenohumeral dysplasia following obstetric brachial plexus injury. Magn Reson Imaging 25:1277–1282. https://doi.org/10.1016/j.mri.2007.02.008

    Article  PubMed  Google Scholar 

  13. Pöyhiä TH, Nietosvaara YA, Remes VM et al (2005) MRI of rotator cuff muscle atrophy in relation to glenohumeral joint incongruence in brachial plexus birth injury. Pediatr Radiol 35:402–409. https://doi.org/10.1007/s00247-004-1377-3

    Article  PubMed  Google Scholar 

  14. Hogendoorn S, van Overvest KLJ, Watt I et al (2010) Structural changes in muscle and glenohumeral joint deformity in neonatal brachial plexus palsy. J Bone Joint Surg Am 92:935–942. https://doi.org/10.2106/JBJS.I.00193

    Article  PubMed  Google Scholar 

  15. van Gelein Vitringa VM, van Kooten EO, Mullender MG et al (2009) An MRI study on the relations between muscle atrophy, shoulder function and glenohumeral deformity in shoulders of children with obstetric brachial plexus injury. J Brachial Plex Peripher Nerve Inj 4:5. https://doi.org/10.1186/1749-7221-4-5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eismann EA, Little KJ, Laor T, Cornwall R (2015) Glenohumeral abduction contracture in children with unresolved neonatal brachial plexus palsy. J Bone Joint Surg Am 97:112–118. https://doi.org/10.2106/JBJS.N.00203

    Article  PubMed  Google Scholar 

  17. Waters PM, Monica JT, Earp BE et al (2009) Correlation of radiographic muscle cross-sectional area with glenohumeral deformity in children with brachial plexus birth palsy. J Bone Joint Surg Am 91:2367–2375. https://doi.org/10.2106/JBJS.H.00417

    Article  PubMed  Google Scholar 

  18. Brochard S, Alter K, Damiano D (2014) Shoulder strength profiles in children with and without brachial plexus palsy. Muscle Nerve 50:60–66. https://doi.org/10.1002/mus.24099

    Article  PubMed  PubMed Central  Google Scholar 

  19. Delpont M, Coulet B, Cottalorda J et al (2021) Weakness of shoulder rotator muscles in children with brachial plexus palsy under 5 years of age: not only in lateral rotation. Ann of Phy and Rehabil Med 65:101572. https://doi.org/10.1016/j.rehab.2021.101572

    Article  Google Scholar 

  20. Davies G (1992) Compendium of isokinetics in clinical usage. S&G Publications, La Crosse

    Google Scholar 

  21. Waters PM, Smith GR, Jaramillo D (1998) Glenohumeral deformity secondary to brachial plexus birth palsy. J Bone Joint Surg Am 80:668–677. https://doi.org/10.2106/00004623-199805000-00007

    Article  CAS  PubMed  Google Scholar 

  22. Nikolaou S, Liangjun H, Tuttle LJ et al (2014) Contribution of denervated muscle to contractures after neonatal brachial plexus injury: not just muscle fibrosis. Muscle Nerve 49:398–404. https://doi.org/10.1002/mus.23927

    Article  CAS  PubMed  Google Scholar 

  23. Mascarenhas VV, Casaccia M, Fernandez-Martin A et al (2014) The role of subscapularis muscle denervation in the pathogenesis of shoulder internal rotation contracture after neonatal brachial plexus palsy: a study in a rat model. J Orthop Res 32:1675–1679. https://doi.org/10.1002/jor.22709

    Article  PubMed  Google Scholar 

  24. Nikolaou S, Peterson E, Kim A et al (2011) Impaired growth of denervated muscle contributes to contracture formation following neonatal brachial plexus injury. J Bone Joint Surg Am 93:461–470. https://doi.org/10.2106/JBJS.J.00943

    Article  PubMed  Google Scholar 

  25. Pagano AF, Brioche T, Arc-Chagnaud C et al (2018) Short-term disuse promotes fatty acid infiltration into skeletal muscle. J Cachexia Sarcopenia Muscle 9:335–347. https://doi.org/10.1002/jcsm.12259

    Article  PubMed  Google Scholar 

  26. Riquier-Le Chatelier M, Giai J, Lallement-Dudek P et al (2021) Muscle elasticity in patients with neonatal brachial plexus palsy using shear-wave ultrasound elastography. Preliminary results J Pediatr Orthop B 30:385–392. https://doi.org/10.1097/BPB.0000000000000781

    Article  PubMed  Google Scholar 

  27. Pons C, Borotikar B, Garetier M et al (2018) Quantifying skeletal muscle volume and shape in humans using MRI: a systematic review of validity and reliability. PLoS ONE 13:e0207847. https://doi.org/10.1371/journal.pone.0207847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee D, Hong K-T, Lee W et al (2020) Threshold-based quantification of fatty degeneration in the supraspinatus muscle on MRI as an alternative method to Goutallier classification and single-voxel MR spectroscopy. BMC Musculoskelet Disord 21:362. https://doi.org/10.1186/s12891-020-03400-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goutallier D, Postel JM, Bernageau J et al (1994) Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res 78–83

Download references

Funding

The authors declare that this study was funded by the University Hospital of Montpellier.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization: Bertrand Coulet, Isabelle Laffont, Marion Delpont; Material preparation, data collection and analysis: Maxime Balloufaud, Sarah Hosni, Maxime Virassamy, Marion Delpont, Karen Lambert; First draft of the manuscript: Maxime Balloufaud; Writing review: Karen Lambert, Marion Delpont. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marion Delpont.

Ethics declarations

Ethics approval

This study followed the recommendations of the Declaration of Helsinki, was approved by the IRB of Montpellier (2018_IRB-MTP_02-14), and was registered at ClinicalTrials.gov (number NCT03440658). Written consent was obtained from the legal representatives of all children.

Consent for publication

Informed consent to participate to the publication was obtained from legal guardians.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Level of evidence: IV, case series.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balloufaud, M., Hosni, S., Bolivar, J. et al. Subscapularis impairment on magnetic resonance imaging is correlated with functional limitations in neonatal brachial plexus palsy. International Orthopaedics (SICOT) (2024). https://doi.org/10.1007/s00264-023-06081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00264-023-06081-5

Keywords

Navigation