Skip to main content

Advertisement

Log in

Modified classifications and surgical decision-making process for chronic anterior talofibular ligament injuries based on the correlation of imaging studies and arthroscopic findings

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Surgical treatment of chronic ankle instability (CAI) typically includes ligament repair or reconstruction. Using preoperative ultrasonography or magnetic resonance imaging (MRI) to choose an appropriate arthroscopic procedure is still difficult. The aim of this study was to evaluate the correlation of imaging studies with arthroscopic findings and support the arthroscopic surgical decision-making process.

Methods

One hundred twelve patients with chronic anterior talofibular ligament (ATFL) injuries were treated using the arthroscopic surgical decision-making process from November 2018 to August 2020. Preoperative imaging assessments using dynamic ultrasonography, MRI, and combined methods were applied to categorize the ATFL remnants into three quality grades (“good,” “fair,” and “poor”). Arthroscopic findings were classified into 6 major types (7 subtypes) and used to select an appropriate surgical procedure. Correlations between imaging studies, arthroscopic findings, and surgical methods were evaluated. Diagnostic parameters, clinical outcomes, and complications were also assessed.

Results

There was a significant interobserver agreement in the evaluation of dynamic ultrasonography (0.954, P < 0.001), MRI (0.958, P < 0.001), and arthroscopy diagnosis (0.978, P < 0.001). There was a significant correlation between the modified imaging classifications, arthroscopic diagnostic types, and surgical procedures. The mean follow-up period was 33.58 ± 8.85 months. Significant improvements were documented in postoperative ankle functions when assessed with Karlson-Peterson scores and Cumberland Ankle Instability Tool scores. The risk of complications is also very low.

Conclusion

The modified classifications and surgical decision-making process based on dynamic ultrasonography, MRI, and arthroscopic findings, as proposed in this study, might help in selecting an appropriate arthroscopic surgical procedure for chronic ATFL injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang K, Khan AA, Dai H, Li Y, Tao T, Jiang Y, Gui J (2020) A modified all-inside arthroscopic remnant-preserving technique of lateral ankle ligament reconstruction: medium-term clinical and radiologic results comparable with open reconstruction. Int Orthop 44:2155–2165. https://doi.org/10.1007/s00264-020-04773-w

    Article  PubMed  Google Scholar 

  2. Thes A, Odagiri H, Elkaim M, Lopes R, Andrieu M, Cordier G, Molinier F, Benoist J, Colin F, Boniface O, Guillo S, Bauer T, French Arthroscopic S (2018) Arthroscopic classification of chronic anterior talo-fibular ligament lesions in chronic ankle instability. Orthop Traumatol Surg Res 104:S207–SS11. https://doi.org/10.1016/j.otsr.2018.09.004

    Article  PubMed  Google Scholar 

  3. de Vries JS, Krips R, Sierevelt IN, Blankevoort L, van Dijk CN (2011) Interventions for treating chronic ankle instability. Cochrane Database Syst Rev:CD004124. https://doi.org/10.1002/14651858.CD004124.pub3

  4. Vuurberg G, Pereira H, Blankevoort L, van Dijk CN (2018) Anatomic stabilization techniques provide superior results in terms of functional outcome in patients suffering from chronic ankle instability compared to non-anatomic techniques. Knee Surg Sports Traumatol Arthrosc 26:2183–2195. https://doi.org/10.1007/s00167-017-4730-4

    Article  CAS  PubMed  Google Scholar 

  5. Cao Y, Hong Y, Xu Y, Zhu Y, Xu X (2018) Surgical management of chronic lateral ankle instability: a meta-analysis. J Orthop Surg Res 13:159. https://doi.org/10.1186/s13018-018-0870-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tourne Y, Mabit C (2017) Lateral ligament reconstruction procedures for the ankle. Orthop Traumatol Surg Res 103:S171–SS81. https://doi.org/10.1016/j.otsr.2016.06.026

    Article  CAS  PubMed  Google Scholar 

  7. Guillodo Y, Riban P, Guennoc X, Dubrana F, Saraux A (2007) Usefulness of ultrasonographic detection of talocrural effusion in ankle sprains. J Ultrasound Med 26:831–836. https://doi.org/10.7863/jum.2007.26.6.831

    Article  PubMed  Google Scholar 

  8. Oae K, Takao M, Uchio Y, Ochi M (2010) Evaluation of anterior talofibular ligament injury with stress radiography, ultrasonography and MR imaging. Skeletal Radiol 39:41–47. https://doi.org/10.1007/s00256-009-0767-x

    Article  PubMed  Google Scholar 

  9. Margetić P, Pavić R (2012) Comparative assessment of the acute ankle injury by ultrasound and magnetic resonance. Coll Antropol 36:605–610

    PubMed  Google Scholar 

  10. Ekinci S, Polat O, Gunalp M, Demirkan A, Koca A (2013) The accuracy of ultrasound evaluation in foot and ankle trauma. Am J Emerg Med 31:1551–1555. https://doi.org/10.1016/j.ajem.2013.06.008

    Article  PubMed  Google Scholar 

  11. Michels F, Pereira H, Calder J, Matricali G, Glazebrook M, Guillo S, Karlsson J, Acevedo J, Batista J, Bauer T, Calder J, Carreira D, Choi W, Corte-Real N, Glazebrook M, Ghorbani A, Giza E, Guillo S, Hunt K et al (2018) Searching for consensus in the approach to patients with chronic lateral ankle instability: ask the expert. Knee Surg Sports Traumatol Arthrosc 26:2095–2102. https://doi.org/10.1007/s00167-017-4556-0

    Article  PubMed  Google Scholar 

  12. Vega J, Malagelada F, Dalmau-Pastor M (2021) Ankle microinstability: arthroscopic findings reveal four types of lesion to the anterior talofibular ligament’s superior fascicle. Knee Surg Sports Traumatol Arthrosc 29:1294–1303. https://doi.org/10.1007/s00167-020-06089-z

    Article  PubMed  Google Scholar 

  13. Kemmochi M, Sasaki S, Fujisaki K, Oguri Y, Kotani A, Ichimura S (2016) A new classification of anterior talofibular ligament injuries based on ultrasonography findings. J Orthop Sci 21:770–778. https://doi.org/10.1016/j.jos.2016.06.011

    Article  PubMed  Google Scholar 

  14. Morvan A, Klouche S, Thes A, Hardy P, Bauer T (2018) Reliability and validity of preoperative MRI for surgical decision making in chronic lateral ankle instability. Eur J Orthop Surg Traumatol 28:713–719. https://doi.org/10.1007/s00590-017-2116-4

    Article  PubMed  Google Scholar 

  15. Liu W, Li H, Hua Y (2017) Quantitative magnetic resonance imaging (MRI) analysis of anterior talofibular ligament in lateral chronic ankle instability ankles pre- and postoperatively. BMC Musculoskelet Disord 18:397. https://doi.org/10.1186/s12891-017-1758-z

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wei S, Tang M, Li W, Zhi X, Xu F, Cai X (2022) Arthroscopic suture-bridge repair technique for an avulsion of the talar insertion of the anterior talofibular ligament. J Foot Ankle Surg 61:689–694. https://doi.org/10.1053/j.jfas.2021.10.031

    Article  PubMed  Google Scholar 

  17. Roemer FW, Jomaah N, Niu J, Almusa E, Roger B, D’Hooghe P, Geertsema C, Tol JL, Khan K, Guermazi A (2014) Ligamentous injuries and the risk of associated tissue damage in acute ankle sprains in athletes: a cross-sectional MRI study. Am J Sports Med 42:1549–1557. https://doi.org/10.1177/0363546514529643

    Article  PubMed  Google Scholar 

  18. Kanamoto T, Shiozaki Y, Tanaka Y, Yonetani Y, Horibe S (2014) The use of MRI in pre-operative evaluation of anterior talofibular ligament in chronic ankle instability. Bone Joint Res 3:241–245. https://doi.org/10.1302/2046-3758.38.2000295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Putte-Katier N, van Ochten JM, van Middelkoop M, Bierma-Zeinstra SM, Oei EH (2015) Magnetic resonance imaging abnormalities after lateral ankle trauma in injured and contralateral ankles. Eur J Radiol 84:2586–2592. https://doi.org/10.1016/j.ejrad.2015.09.028

    Article  PubMed  Google Scholar 

  20. Kim YS, Kim YB, Kim TG, Lee SW, Park SH, Lee HJ, Choi YJ, Koh YG (2015) Reliability and validity of magnetic resonance imaging for the evaluation of the anterior talofibular ligament in patients undergoing ankle arthroscopy. Arthroscopy 31:1540–1547. https://doi.org/10.1016/j.arthro.2015.02.024

    Article  PubMed  Google Scholar 

  21. Nazarenko A, Beltran LS, Bencardino JT (2013) Imaging evaluation of traumatic ligamentous injuries of the ankle and foot. Radiol Clin North Am 51:455–478. https://doi.org/10.1016/j.rcl.2012.11.004

    Article  PubMed  Google Scholar 

  22. O’Neill PJ, Van Aman SE, Guyton GP (2010) Is MRI adequate to detect lesions in patients with ankle instability? Clin Orthop Relat Res 468:1115–1119. https://doi.org/10.1007/s11999-009-1131-0

    Article  PubMed  Google Scholar 

  23. Tourne Y, Besse JL, Mabit C, Sofcot (2010) Chronic ankle instability. Which tests to assess the lesions? Which therapeutic options? Orthop Traumatol Surg Res 96: 433-446 https://doi.org/10.1016/j.otsr.2010.04.005

  24. Singh DR, Chin MS, Peh WC (2014) Artifacts in musculoskeletal MR imaging. Semin Musculoskelet Radiol 18:12–22. https://doi.org/10.1055/s-0034-1365831

    Article  PubMed  Google Scholar 

  25. Ombregt L (2013) 58 - Disorders of the ankle and subtalar joints. In: Ombregt L (ed) A System of Orthopaedic Medicine (Third Edition). Churchill Livingstone, pp 761–87.e3

    Chapter  Google Scholar 

  26. Alves T, Dong Q, Jacobson J, Yablon C, Gandikota G (2019) Normal and injured ankle ligaments on ultrasonography with magnetic resonance imaging correlation. J Ultrasound Med 38:513–528. https://doi.org/10.1002/jum.14716

    Article  PubMed  Google Scholar 

  27. Thes A, Klouche S, Ferrand M, Hardy P, Bauer T (2016) Assessment of the feasibility of arthroscopic visualization of the lateral ligament of the ankle: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 24:985–990. https://doi.org/10.1007/s00167-015-3804-4

    Article  PubMed  Google Scholar 

  28. Beighton P, Solomon L, Soskolne CL (1973) Articular mobility in an African population. Ann Rheum Dis 32:413–418. https://doi.org/10.1136/ard.32.5.413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei S, Fan D, Han F, Tang M, Kong C, Xu F, Cai X (2021) Using arthroscopy combined with fluoroscopic technique for accurate location of the bone tunnel entrance in chronic ankle instability treatment. BMC Musculoskelet Disord 22:289. https://doi.org/10.1186/s12891-021-04165-0

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hua Y, Chen S, Li Y, Chen J, Li H (2010) Combination of modified Brostrom procedure with ankle arthroscopy for chronic ankle instability accompanied by intra-articular symptoms. Arthroscopy 26:524–528. https://doi.org/10.1016/j.arthro.2010.02.002

    Article  PubMed  Google Scholar 

  31. Buerer Y, Winkler M, Burn A, Chopra S, Crevoisier X (2013) Evaluation of a modified Brostrom-Gould procedure for treatment of chronic lateral ankle instability: a retrospective study with critical analysis of outcome scoring. Foot Ankle Surg 19:36–41. https://doi.org/10.1016/j.fas.2012.10.005

    Article  PubMed  Google Scholar 

  32. Karlsson J, Peterson L (1991) Evaluation of ankle joint function: the use of a scoring scale. The foot 1:15–19

    Article  Google Scholar 

  33. Hiller CE, Refshauge KM, Bundy AC, Herbert RD, Kilbreath SL (2006) The Cumberland ankle instability tool: a report of validity and reliability testing. Arch Phys Med Rehabil 87:1235–1241. https://doi.org/10.1016/j.apmr.2006.05.022

    Article  PubMed  Google Scholar 

  34. Lynch SA (2002) Assessment of the injured ankle in the athlete. J Athl Train 37:406–412

    PubMed  PubMed Central  Google Scholar 

  35. Elkaim M, Thes A, Lopes R, Andrieu M, Cordier G, Molinier F, Benoist J, Colin F, Boniface O, Guillo S, Bauer T, French Arthroscopic S (2018) Agreement between arthroscopic and imaging study findings in chronic anterior talo-fibular ligament injuries. Orthop Traumatol Surg Res 104:S213–S2S8. https://doi.org/10.1016/j.otsr.2018.09.008

    Article  PubMed  Google Scholar 

  36. Yasui Y, Takao M (2013) Comparison of arthroscopic and histological evaluation on the injured anterior talofibular ligament. In: The American Academy of Orthopaedic Surgeons (AAOS) 2013 annual meeting; 2013. AAOS, Chicago, USA

    Google Scholar 

Download references

Acknowledgements

We would like to express gratitude to John Valerius, an English native speaker, for taking the time to revise our paper. We also thank Weilin Li, MD, Shunji Gao, MD, and Huibing Tan, MD for imaging’s assessment.

Author information

Authors and Affiliations

Authors

Contributions

Jing Han: manuscript preparation and literature research

Shenglong Qian: data collection and follow-up assessment.

Junhong Lian: data collection and follow-up assessment.

Helin Wu: data review and assessment.

Boyu Zheng: data analysis and statistical analysis

Xinchen Wu: data review and assessment.

Feng Xu: manuscript review

Shijun Wei: designed study and manuscript revision

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shijun Wei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Levels of evidence: Level-IV, Case series study

Supplementary information

ESM 1

(DOCX 15 kb)

ESM 2

(PNG 2410 kb) (DOCX 16 kb)

ESM 3

(DOCX 15 kb)

ESM 4

(DOCX 16 kb)

ESM 5

(DOCX 15 kb)

ESM 6

Supplementary Figure 1 The effective diameter of an osseous avulsion of the fibular side or os subfibulare illustrated by 3D reconstruction CT. The effective diameter means the involved width of the bony fragment at the plane of the ligament remnant, which is the distance between the 2 white dots on the black circle. a, b: Effective size < 5 mm. c, d: Effective size ≥ 5 mm. TOT: talus obscure tubercle. FOT: fibular obscure tubercle.(PNG 6005 kb)

High resulotion image (TIFF 8482 kb)

ESM 7

Supplementary Figure 2 Receiver operating characteristic (ROC) curve of dynamic ultrasonography, MRI, and the 2 methods combined. The area under the ROC curve (AUC) is 0.767 (95% CI:0.669–0.864), 0.706 (95% CI:0.607–0.805), and 0.750 (95% CI:0.659–0.842) for dynamic ultrasonography, MRI, and the 2 methods combined, respectively. (PNG 2410 kb)

High resulotion image (TIF 5574 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Qian, S., Lian, J. et al. Modified classifications and surgical decision-making process for chronic anterior talofibular ligament injuries based on the correlation of imaging studies and arthroscopic findings. International Orthopaedics (SICOT) 47, 2683–2692 (2023). https://doi.org/10.1007/s00264-023-05896-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-023-05896-6

Keywords

Navigation