Skip to main content
Log in

A comparison of stress, contact pressure, and contact area on menisci in re-injury mechanisms after reconstruction of the anterior cruciate ligament with autograft and synthetic graft: a finite element study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The anterior cruciate ligament (ACL) is crucial in maintaining knee stability. Some motion mechanisms, which are common in sports, cause excessive load to be passed on the ACL. In non-contact ACL injuries, the ACL cannot sustain the high stress and becomes injured or ruptures in the valgus-external rotation mechanism (VERM) and varus-internal rotation mechanism (VIRM). The mechanical strength of the grafts used to repair the torn ligament varies. The purpose of this study is to look at the alterations in the menisci after anterior cruciate ligament repair with autografts and synthetic grafts in cases of non-contact re-injury mechanisms.

Methods

In the finite element analysis, VERM and VIRM motions of the injury were simulated with different ACL graft materials. During the simulations of these mechanism motions with polyethylene terephthalate (PET) and patellar tendon (PT), the contact pressures, contact areas, and von mises stress values created in the medial and lateral meniscus were compared.

Results

The peak contact pressures on the menisci during the VERM are higher than the peak contact pressures during the VIRM, except for one variation. The peak contact pressure of the medial meniscus is almost the same for both graft materials and mechanisms. Furthermore, the peak contact pressures in the menisci are higher than in the VERM. For all injury mechanisms, the peak contact stresses on the lateral meniscus are higher than on the medial meniscus.

Conclusions

The findings suggest that VERM can induce further knee joint injury. It was found that the PET will lessen the pressure on the menisci even more. It is also advantageous since it does not damage the anterior extremities and transmits less pressure to the menisci. In conclusion, using a high-strength ACL is healthier for the menisci. Even though synthetic grafts are not clinically preferred, the study demonstrates that enhancing the material properties of synthetic grafts will increase the chance of their use in the future, based on the current results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Sanders TL, Maradit Kremers H, Bryan AJ et al (2016) Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med 44:1502–1507. https://doi.org/10.1177/0363546516629944

    Article  PubMed  Google Scholar 

  2. Ristić V, Ninković S, Harhaji V, Milankov M (2010) Causes of anterior cruciate ligament injuries. Med Pregl 63:541–545. https://doi.org/10.2298/MPNS1008541R

    Article  PubMed  Google Scholar 

  3. Salem HS, Shi WJ, Tucker BS et al (2018) Contact versus noncontact anterior cruciate ligament injuries: is mechanism of injury predictive of concomitant knee pathology? Arthroscopy 34:200–204

    Article  PubMed  Google Scholar 

  4. Colby S, Francisco A, Yu B et al (2000) Electromyographic and kinematic analysis of cutting maneuvers. Implications for anterior cruciate ligament injury. Am J Sports Med 28:234–240. https://doi.org/10.1177/03635465000280021501

    Article  CAS  PubMed  Google Scholar 

  5. Arilla FV, Yeung M, Bell K et al (2015) Experimental execution of the simulated pivot-shift test: a systematic review of techniques. Arthroscopy 31:2445–2454.e2. https://doi.org/10.1016/j.arthro.2015.06.027

  6. Yagi M, Wong EK, Kanamori A et al (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666. https://doi.org/10.1177/03635465020300050501

    Article  PubMed  Google Scholar 

  7. Brouwer GM, van Tol AW, Bergink AP et al (2007) Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum 56:1204–1211. https://doi.org/10.1002/art.22515

    Article  CAS  PubMed  Google Scholar 

  8. Cerejo R, Dunlop DD, Cahue S et al (2002) The influence of alignment on risk of knee osteoarthritis progression according to baseline stage of disease. Arthritis Rheum 46:2632–2636. https://doi.org/10.1002/art.10530

    Article  PubMed  Google Scholar 

  9. Sharma L, Eckstein F, Song J et al (2008) Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum 58:1716–1726. https://doi.org/10.1002/art.23462

    Article  PubMed  Google Scholar 

  10. Canale ST (2003) Campbell’s Operative Orthopaedics. In: Miller RH (ed) Knee Injuries, 10th edn. Mosby-Yearbook, Philadelphia, pp 2165–2338

    Google Scholar 

  11. Gür S (1999) Greft Seçimi. Acta Orthopaedica et Traumatologica Turcica 33:401–404

    Google Scholar 

  12. Insall JN, Scott WN (2001) Surgery of the Knee. Classification of the knee ligament injury, 3rd edn. Churchill Livingstone, Philadelphia, pp 585–595

    Google Scholar 

  13. Nicholas JA (1970) Injuries to knee ligaments. Relationship to looseness and tightness in football players. JAMA 212:2236–2239. https://doi.org/10.1001/jama.212.13.2236

    Article  CAS  PubMed  Google Scholar 

  14. Cihan S, Duman E (2020) Ön Çapraz Bağ Rekonstrüksiyonunda Transtibial ve Anteromedial Portal Tekniklerin Fonksiyonel Olarak Karşılaştırılması. Turkish J Clin Lab 412–418. https://doi.org/10.18663/tjcl.822342

  15. Shelton WR, Fagan BC (2011) Autografts commonly used in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 19:259–264. https://doi.org/10.5435/00124635-201105000-00003

    Article  PubMed  Google Scholar 

  16. Cheung SC, Allen CR, Gallo RA et al (2012) Patients’ attitudes and factors in their selection of grafts for anterior cruciate ligament reconstruction. Knee 19:49–54. https://doi.org/10.1016/j.knee.2010.11.009

    Article  PubMed  Google Scholar 

  17. West RV, Harner CD (2005) Graft selection in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 13:197–207. https://doi.org/10.5435/00124635-200505000-00006

    Article  PubMed  Google Scholar 

  18. Dhammi IK, Ul-Haq R, Kumar S (2015) Graft choices for anterior cruciate ligament reconstruction. Indian J Orthop 49:127–128. https://doi.org/10.4103/0019-5413.152393

    Article  PubMed  PubMed Central  Google Scholar 

  19. Macaulay AA, Perfetti DC, Levine WN (2012) Anterior cruciate ligament graft choices. Sports Health 4:63–68. https://doi.org/10.1177/1941738111409890

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shaerf DA, Pastides PS, Sarraf KM, Willis-Owen CA (2014) Anterior cruciate ligament reconstruction best practice: a review of graft choice. World J Orthop 5:23–29. https://doi.org/10.5312/wjo.v5.i1.23

    Article  PubMed  PubMed Central  Google Scholar 

  21. Legnani C, Ventura A, Terzaghi C et al (2010) Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature. Int Orthop 34:465–471. https://doi.org/10.1007/s00264-010-0963-2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Conte EJ, Hyatt AE, Gatt CJJ, Dhawan A (2014) Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 30:882–890. https://doi.org/10.1016/j.arthro.2014.03.028

    Article  PubMed  Google Scholar 

  23. Tampere T, Devriendt W, Cromheecke M et al (2019) Tunnel placement in ACL reconstruction surgery: smaller inter-tunnel angles and higher peak forces at the femoral tunnel using anteromedial portal femoral drilling—a 3D and finite element analysis. Knee Surg Sports Traumatol Arthrosc 27:2568–2576. https://doi.org/10.1007/s00167-018-5272-0

    Article  PubMed  Google Scholar 

  24. Otake N, Chen H, Yao X, Shoumura S (2007) Morphologic study of the lateral and medial collateral ligaments of the human knee. Okajimas Folia Anat Jpn 83:115–122. https://doi.org/10.2535/ofaj.83.115

    Article  PubMed  Google Scholar 

  25. Kubicek M, Florian Z, k, (2009) Stress strain analysis of knee joint. Eng Mech 16:315–322

    Google Scholar 

  26. Park Y-S, Kwon H-B (2013) Three-dimensional finite element analysis of implant-supported crown in fibula bone model. J Adv Prosthodont 5:326–332. https://doi.org/10.4047/jap.2013.5.3.326

    Article  PubMed  PubMed Central  Google Scholar 

  27. Smith RDJ, Zargar N, Brown CP et al (2017) Characterizing the macro and micro mechanical properties of scaffolds for rotator cuff repair. J Shoulder Elbow Surg 26:2038–2046. https://doi.org/10.1016/j.jse.2017.06.035

    Article  PubMed  Google Scholar 

  28. Wilson TW, Zafuta MP, Zobitz M (1999) A biomechanical analysis of matched bone-patellar tendon-bone and double-looped semitendinosus and gracilis tendon grafts. Am J Sports Med 27:202–207. https://doi.org/10.1177/03635465990270021501

    Article  CAS  PubMed  Google Scholar 

  29. Smeets K, Slane J, Scheys L et al (2017) Mechanical analysis of extra-articular knee ligaments. Part one: native knee ligaments. Knee 24:949–956. https://doi.org/10.1016/j.knee.2017.07.013

    Article  PubMed  Google Scholar 

  30. Wang H, Zhang M, Cheng C-K (2020) A novel protection liner to improve graft-tunnel interaction following anterior cruciate ligament reconstruction: a finite element analysis. J Orthop Surg Res 15:232. https://doi.org/10.1186/s13018-020-01755-x

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhu J, Marshall B, Tang X et al (2022) ACL graft with extra-cortical fixation rotates around the femoral tunnel aperture during knee flexion. Knee Surg Sports Traumatol Arthrosc 30:116–123. https://doi.org/10.1007/s00167-021-06703-8

    Article  PubMed  Google Scholar 

  32. Yin L, Chen K, Guo L et al (2015) Identifying the functional flexion-extension axis of the knee: an in-vivo kinematics study. PLoS One 10:e0128877. https://doi.org/10.1371/journal.pone.0128877

  33. Boguszewski DV, Joshi NB, Yang PR et al (2016) Location of the natural knee axis for internal-external tibial rotation. Knee 23:1083–1088. https://doi.org/10.1016/j.knee.2015.11.003

    Article  PubMed  Google Scholar 

  34. Wan C, Hao Z, Wen S (2013) The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study. J Biomech Eng 135. https://doi.org/10.1115/1.4023696

  35. Safari M, Shojaei S, Tehrani P, Karimi A (2020) A patient-specific finite element analysis of the anterior cruciate ligament under different flexion angles. J Back Musculoskelet Rehabil 33:811–815. https://doi.org/10.3233/BMR-191505

    Article  PubMed  Google Scholar 

  36. Huang R, Zheng H, Xu Q (2012) Biomechanical evaluation of different techniques in double bundle anterior cruciate ligament reconstruction using finite element analysis. J Biomim Biomater Tissue Eng 13:55–68. https://doi.org/10.4028/www.scientific.net/JBBTE.13.55

    Article  Google Scholar 

  37. You M-W, Park JS, Park SY et al (2014) Posterior root of lateral meniscus: the detailed anatomic description on 3T MRI. Acta Radiol 55:359–365. https://doi.org/10.1177/0284185113496677

    Article  PubMed  Google Scholar 

  38. Forkel P, Petersen W (2012) Posterior root tear fixation of the lateral meniscus combined with arthroscopic ACL double-bundle reconstruction: technical note of a transosseous fixation using the tibial PL tunnel. Arch Orthop Trauma Surg 132:387–391. https://doi.org/10.1007/s00402-011-1429-8

    Article  PubMed  Google Scholar 

  39. De SAA, Blankenbaker DG, Richard K et al (2009) MR diagnosis of posterior root tears of the lateral meniscus using arthroscopy as the reference standard. AJR Am J Roentgenol 192:480–486. https://doi.org/10.2214/AJR.08.1300

    Article  Google Scholar 

  40. Brody JM, Lin HM, Hulstyn MJ, Tung GA (2006) Lateral meniscus root tear and meniscus extrusion with anterior cruciate ligament tear. Radiology 239:805–810. https://doi.org/10.1148/radiol.2393050559

    Article  PubMed  Google Scholar 

  41. Willinger L, Lang JJ, Berthold D et al (2020) Varus alignment aggravates tibiofemoral contact pressure rise after sequential medial meniscus resection. Knee Surg Sports Traumatol Arthrosc 28:1055–1063. https://doi.org/10.1007/s00167-019-05654-5

    Article  PubMed  Google Scholar 

  42. Willinger L, Foehr P, Achtnich A et al (2019) Effect of lower limb alignment in medial meniscus-deficient knees on tibiofemoral contact pressure. Orthop J Sports Med. https://doi.org/10.1177/2325967118824611

    Article  PubMed  PubMed Central  Google Scholar 

  43. Donahue TLH, Hull ML, Rashid MM, Jacobs CR (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng 124:273–280. https://doi.org/10.1115/1.1470171

    Article  PubMed  Google Scholar 

  44. Sakamoto Y, Tsukada H, Sasaki S et al (2020) Effects of the tibial tunnel position on knee joint stability and meniscal contact pressure after double-bundle anterior cruciate ligament reconstruction. J Orthop Sci 25:1040–1046. https://doi.org/10.1016/j.jos.2019.12.006

    Article  PubMed  Google Scholar 

  45. Asano T, Akagi M, Nakamura T (2005) The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image-matching technique. J Arthroplasty 20:1060–1067. https://doi.org/10.1016/j.arth.2004.08.005

    Article  PubMed  Google Scholar 

  46. Liu C, Wang Y, Li Z et al (2018) Tibiofemoral joint contact area and stress after single-bundle anterior cruciate ligament reconstruction with transtibial versus anteromedial portal drilling techniques. J Orthop Surg Res 13:247. https://doi.org/10.1186/s13018-018-0956-1

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mulcahey MK, Monchik KO, Yongpravat C et al (2012) Effects of single-bundle and double-bundle ACL reconstruction on tibiofemoral compressive stresses and joint kinematics during simulated squatting. Knee 19:469–476

    Article  PubMed  Google Scholar 

  48. Cheng R, Wang H, Dimitriou D et al (2022) Central femoral tunnel placement can reduce stress and strain around bone tunnels and graft more than anteromedial femoral tunnel in anterior cruciate ligament reconstruction. Int J Numer Method Biomed Eng 38:e3590. https://doi.org/10.1002/cnm.3590

Download references

Acknowledgements

The authors would like to thank Ayberk Dizdar for their contributions to sharing technical information.

Author information

Authors and Affiliations

Authors

Contributions

These authors contributed equally to this work.

Corresponding author

Correspondence to Gül Hilal Çakır.

Ethics declarations

Ethical approval

Patient’s informed consent and Institutional Review Board approval were obtained before initiating this study (2009/2 KÜ İAEK 1/9).

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakır, G.H., Mutlu, İ. A comparison of stress, contact pressure, and contact area on menisci in re-injury mechanisms after reconstruction of the anterior cruciate ligament with autograft and synthetic graft: a finite element study. International Orthopaedics (SICOT) 47, 2487–2496 (2023). https://doi.org/10.1007/s00264-023-05881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-023-05881-z

Keywords

Navigation