Skip to main content

Advertisement

Log in

Infectious profiles in civilian gunshot associated long bone fractures

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

There is a paucity of literature on infections in civilian gunshot associated with long bone fractures with the reported rates ranging from 0–15.7%.This study aimed to investigate the rates of infection associated with long bone fractures caused by civilian gunshots. The specific objectives were to determine if certain extremities were at a higher risk for infection and to identify the types of bacteria present in these infections by analyzing culture isolates.

Methods

We conducted a retrospective review of consecutive patients aged 18–64 who sustained gunshot-associated long bone fractures at an urban Level I trauma centre from 2010 to 2017. Patient selection was based done through a institutional trauma centre database using international classification of diseases (ICD) 9 and 10 codes. We included patients who underwent surgical treatment, specifically fracture fixation, at our institution and excluded patients with fractures involving the pelvis, spine, foot, and hand. A total of 384 gunshot-associated long bone fractures in 347 patients were identified for analysis. Relevant patient-, injury-, and treatment-related variables were extracted from clinical records and radiographic reviews. Outcomes of interest included bony union, repeat operative procedures, and the development of deep infection.

Results

347 patients with 384 long bone fractures were included. 32 fractures in 32 patients developed an infection for an incidence of 9.3% of patients and 8.3% of fractures. Gram-positive bacteria were present in 23/32 (72.0%) culture isolates, gram-negative bacteria in 10/32 (31.3%) culture isolates, and six infections were polymicrobial. Staphylococcus 16/32 (50.0%) and Enterobacter 6/32 (18.8%) species were the most common isolates. Of the Staphylococcus species, 5/16 (31.3%) were MRSA. Lower extremity fractures had a greater risk for infection compared to the upper extremity (11.7% vs 3.7% p < 0.01) and fractures that developed an infection had a larger average zone of comminution (63.9 mm vs 48.5 mm p < 0.05).

Conclusion

This study investigated the rates of infection associated with long bone fractures caused by civilian gunshots. The overall infection rate observed in our series aligns with existing literature. Gram-positive bacteria were the predominant isolates, with a notable incidence of MRSA in our patient population, highlighting the need for considering empiric coverage. Additionally, gram-negative organisms were found in a significant proportion of infections, and a notable percentage of infections were polymicrobial. Our findings emphasize the importance of carefully assessing highly comminuted lower extremity fractures and implementing appropriate antibiotic coverage and operative debridement for patients with gunshot-related long bone fractures. While current prophylaxis algorithms for open fractures lack specific inclusion of gunshot wounds, we propose incorporating these injuries to reduce the incidence of infections associated with such fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability (data transparency)

The analyzed data is available and attached to this manuscript.

Code availability (software application or custom code)

Not applicable.

References

  1. Dobaria V, Aguayo E, Sanaiha Y, Tran Z, Hadaya J, Sareh S, Yong Cho N, Benharash P (2020) National trends and cost burden of surgically treated gunshot wounds in the US. J Am Coll Surg 231:448-459e4. https://doi.org/10.1016/j.jamcollsurg.2020.06.022

    Article  PubMed  Google Scholar 

  2. Dougherty PJ, Vaidya R, Silverton CD, Bartlett C, Najibi S (2009) Joint and long-bone gunshot injuries. J Bone Joint Surg Am 91:980–997

    PubMed  Google Scholar 

  3. Fowler KA, Dahlberg LL, Haileyesus T, Annest JL (2015) Firearm injuries in the United States. Prev Med 79:5–14. https://doi.org/10.1016/j.ypmed.2015.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nguyen MP, Savakus JC, O’Donnell JA, Prayson NF, Reich MS, Golob JF, McDonald AA, Como JJ, Vallier HA (2017) Infection rates and treatment of low-velocity extremity gunshot injuries. J Orthop Trauma 31:326–329. https://doi.org/10.1097/BOT.0000000000000827

    Article  PubMed  Google Scholar 

  5. Bosse MJ, Murray CK, Carlini AR, Firoozabadi R, Manson T, Scharfstein DO, Wenke JC, Zadnik M, Castillo RC, METRC (2017) Assessment of severe extremity wound bioburden at the time of definitive wound closure or coverage: correlation with subsequent postclosure deep wound infection (Bioburden Study). J Orthop Trauma 31:S3–S9. https://doi.org/10.1097/BOT.0000000000000805

    Article  PubMed  Google Scholar 

  6. Islam MdS, Islam SS, Parvin S, Manjur M, Islam MR, Halder RC, MohdS Islam, Rahaman SK, Hoque M, Faruque MdO, Haque AKMN (2022) Current pathogens infecting open fracture tibia and their antibiotic susceptibility at a tertiary care teaching hospital in South East Asia. Infect Prev Pract 4:100205. https://doi.org/10.1016/j.infpip.2022.100205

    Article  PubMed  PubMed Central  Google Scholar 

  7. Penn-Barwell JG, Bennett PM, Mortiboy DE, Fries CA, Groom AFG, Sargeant ID (2016) Factors influencing infection in 10 years of battlefield open tibia fractures. Strategies Trauma Limb Reconstr 11:13–18. https://doi.org/10.1007/s11751-016-0250-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robinson D, On E, Hadas N, Halperin N, Hofman S, Boldur I (1989) Microbiologic flora contaminating open fractures: its significance in the choice of primary antibiotic agents and the likelihood of deep wound infection. J Orthop Trauma 3:283–286

    Article  CAS  PubMed  Google Scholar 

  9. Sudduth JD, Moss JA, Spitler CA, Pham V-LH, Jones LC, Brown JT, Bergin PF (2020) Open fractures: are we still treating the same types of infections? Surg Infect 21:766–772. https://doi.org/10.1089/sur.2019.140

    Article  Google Scholar 

  10. Tornetta P, Della Rocca GJ, Morshed S, Jones C, Heels-Ansdell D, Sprague S, Petrisor B, Jeray KJ, Del Fabbro G, Bzovsky S, Bhandari M, Investigators FLOW (2020) Risk factors associated with infection in open fractures of the upper and lower extremities. J Am Acad Orthop Surg Glob Res Rev 4(e20):00188. https://doi.org/10.5435/JAAOSGlobal-D-20-00188

    Article  Google Scholar 

  11. Garner MR, Sethuraman SA, Schade MA, Boateng H (2020) Antibiotic prophylaxis in open fractures: evidence, evolving issues, and recommendations. J Am Acad Orthop Surg 28:309–315. https://doi.org/10.5435/JAAOS-D-18-00193

    Article  PubMed  Google Scholar 

  12. Papasoulis E, Patzakis MJ, Zalavras CG (2013) Antibiotics in the treatment of low-velocity gunshot-induced fractures: a systematic literature review. Clin Orthop Relat Res 471:3937–3944. https://doi.org/10.1007/s11999-013-2884-z

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marecek GS, Earhart JS, Gardner MJ, Davis J, Merk BR (2016) Surgeon preferences regarding antibiotic prophylaxis for ballistic fractures. Arch Orthop Trauma Surg 136:751–754. https://doi.org/10.1007/s00402-016-2450-8

    Article  PubMed  Google Scholar 

  14. Sathiyakumar V, Thakore RV, Stinner DJ, Obremskey WT, Ficke JR, Sethi MK (2015) Gunshot-induced fractures of the extremities: a review of antibiotic and debridement practices. Curr Rev Musculoskelet Med 8:276–289. https://doi.org/10.1007/s12178-015-9284-9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Woolum JA, Bailey AM, Dugan A, Agrawal R, Baum RA (2020) Evaluation of infection rates with narrow versus broad-spectrum antibiotic regimens in civilian gunshot open-fracture injury. Am J Emerg Med 38:934–939. https://doi.org/10.1016/j.ajem.2019.158358

    Article  PubMed  Google Scholar 

  16. Hauser CJ, Adams CA, Eachempati SR (2006) Prophylactic antibiotic use in open fractures: an evidence-based guideline. Surg Infect 7:379–405. https://doi.org/10.1089/sur.2006.7.379

    Article  Google Scholar 

  17. Rodriguez L, Jung HS, Goulet JA, Cicalo A, Machado-Aranda DA, Napolitano LM (2014) Evidence-based protocol for prophylactic antibiotics in open fractures: Improved antibiotic stewardship with no increase in infection rates. J Trauma Acute Care Surg 77:400–408. https://doi.org/10.1097/TA.0000000000000398

    Article  CAS  PubMed  Google Scholar 

  18. Miller AD, Bookstaver B, Anderson A (2011) Antimicrobial prophylaxis in open lower extremity fractures. OAEM 7. https://doi.org/10.2147/OAEM.S11862

  19. Chang Y, Bhandari M, Zhu KL, Mirza RD, Ren M, Kennedy SA, Negm A, Bhatnagar N, Naji FN, Milovanovic L, Fei Y, Agarwal A, Kamran R, Cho SM, Schandelmaier S, Wang L, Jin L, Hu S, Zhao Y, Lopes LC, Wang M, Petrisor B, Ristevski B, Siemieniuk RAC, Guyatt GH (2019) Antibiotic prophylaxis in the management of open fractures: a systematic survey of current practice and recommendations. JBJS Rev 7:e1–e1. https://doi.org/10.2106/JBJS.RVW.17.00197

    Article  PubMed  Google Scholar 

  20. Kortram K, Bezstarosti H, Metsemakers W-J, Raschke MJ, Van Lieshout EMM, Verhofstad MHJ (2017) Risk factors for infectious complications after open fractures; a systematic review and meta-analysis. International Orthopaedics (SICOT) 41:1965–1982. https://doi.org/10.1007/s00264-017-3556-5

    Article  Google Scholar 

  21. Elniel AR, Giannoudis PV (2018) Open fractures of the lower extremity: current management and clinical outcomes. EFORT Open Rev 3:316–325. https://doi.org/10.1302/2058-5241.3.170072

    Article  PubMed  PubMed Central  Google Scholar 

  22. Metcalf KB, Smith EJ, Wetzel RJ, Sontich JK, Ochenjele G (2020) Comparison of clinical outcomes after intramedullary fixation of tibia fractures caused by blunt trauma and civilian gunshot wounds: a retrospective review. J Orthop Trauma 34:e208–e213. https://doi.org/10.1097/BOT.0000000000001709

    Article  PubMed  Google Scholar 

  23. Nguyen MP, Como JJ, Golob JF, Reich MS, Vallier HA (2018) Variation in treatment of low energy gunshot injuries – a survey of OTA members. Injury 49:570–574. https://doi.org/10.1016/j.injury.2018.01.027

    Article  PubMed  Google Scholar 

  24. Simpson BM, Wilson RH, Grant RE (2003) Antibiotic therapy in gunshot wound injuries. Clin Orthop Relat Res:82–85. https://doi.org/10.1097/00003086-200303000-00008

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed significantly to all vital and important stages of the manuscript.

Corresponding author

Correspondence to Abdullah N. Ghali.

Ethics declarations

Ethical approval

This retrospective chart review study involving human participants was in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The Human Investigation Committee (IRB) of Baylor College of Medicine approved this study.

Consent for publication

Consent to publish was obtained based on our institutional IRB protocol.

Informed consent

Informed consent was obtained based on our institutional IRB protocol.

Conflict of interest

The authors do not declare any conflict of interest regarding the publication of this manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghali, A.N., Venugopal, V., Montgomery, N. et al. Infectious profiles in civilian gunshot associated long bone fractures. International Orthopaedics (SICOT) 48, 31–36 (2024). https://doi.org/10.1007/s00264-023-05870-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-023-05870-2

Keywords

Navigation