Skip to main content

Advertisement

Log in

Survival in Mudejar Spain in the Middle Ages (thirteenth–fourteenth centuries): Ancient Rare Diseases—an uncommon diagnosis in archaeological human remains

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The finding of severe skeletal alterations in ancient remains could give us useful information not only about the pathologies of the individual per se, as it could infer the state of health of a population.

Methods

From the findings of the Mudéjar Cemetery of Uceda (Guadalajara, Central Spain) where a total of 116 burials with almost complete skeleton were recovered, an interesting individual is presented (palaeopathological perspective). The individual 114UC corresponds to a male of 20–25 years old and its age goes back to the thirteenth–fourteenth centuries.

Results

The first inspection showed the presence of serious alterations especially in the lumbar spine and pelvic girdle. Seven vertebrae (from T11 to L5) showed an unusual posterior fusion only in the postzygapophyseal joints. The pelvis, after being accurately assembled and congruence verified by X-ray and CT scan, showed a noticeable asymmetry of both iliac wings together with a coxa magna protusa (Otto’s pelvis), severe anteversion of both cup hips and osteochondritis of the right femoral head. The posterior-slope of both tibias reached about 10°.

Conclusions

The differential diagnoses lead us to think of Arthrogryposis Multiplex Congenita as the most probable diagnosis. We analyzed the same biomechanical aspects after taking into account some patterns that give us information about a possible mobility in the first stage of life. We discuss the very few other cases described both from artworks and in the palaeopathological record. To our knowledge, this case could be the oldest published case of AMC worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Due to the nature of the research, data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Ruffer MA, Willmore JG (1913) Studies in palaeopathology. Note on a tumour of the pelvis dating from Roman Times (250 AD) and found in Egypt. J Pathol Bacteriol 18:480–484. https://doi.org/10.1002/path.1700180148

    Article  Google Scholar 

  2. Gresky J, Dorn J, Teßmann B, Petiti E (2021) How rare is rare? A literature survey of the last 45 years of paleopathological research on ancient rare diseases. Int J Paleopathol 33:94–102. https://doi.org/10.1016/j.ijpp.2021.03.003

    Article  PubMed  Google Scholar 

  3. Mulhern DM (2002) Probable case of Binder syndrome in a skeleton from Quarai, New Mexico. Am J Phys Anthropol 118:371–377. https://doi.org/10.1002/ajpa.10065

    Article  PubMed  Google Scholar 

  4. Al-Shorman A (2018) A paleopathological case of pituitary tumor, Eagle’s syndrome and ossifying fibroma. Med Res J 3:98–101. https://doi.org/10.5603/MRJ.2018.0016

    Article  Google Scholar 

  5. Isidro A, Seiler R, Seco M (2019) Leukemia in Ancient Egypt: earliest case and state-of-the-art techniques for diagnosing generalized osteolytic lesions. Int J Osteoarchaeol 29:273–280. https://doi.org/10.1002/oa.2736

    Article  Google Scholar 

  6. Gresky J, Dellú E, Favia M, Ferorelli D, Radina F, Scardapane A, Petit E (2021) Critical review of the anthropological and paleopathological literature on osteopetrosis as an ancient rare disease (ARD). Int J Paleopathol 33:280–288. https://doi.org/10.1016/j.ijpp.2021.05.006

    Article  PubMed  Google Scholar 

  7. Darin N, Kimber E, Kroksmark AK, Tulinius M (2002) Multiple congenital contractures: birth prevalence, etiology, and outcome. J Pediatr 140:61–67. https://doi.org/10.1067/mpd.2002.121148

    Article  PubMed  Google Scholar 

  8. Lowry RB, Sibbald B, Bedard T, Hall JG (2010) Prevalence of multiple congenital contractures including arthrogryposis multiplex congenita in Alberta, Canada, and a strategy for classification and coding. Birth Defects Res Part A Clin Mol Teratol 88:1057–1061. https://doi.org/10.1002/bdra.20738

    Article  CAS  Google Scholar 

  9. Vermaak DP (2012) Arthrogryposis multiplex congenita of the upper limb. SA Orthop J 11:34–39

    Google Scholar 

  10. Hall JG (1985) Genetic aspects of arthrogryposis. Clin Orthop Relat Res 194:44–53

    Article  Google Scholar 

  11. Hall JG (1997) Arthrogryposis multiplex congenita: etiology, genetics, classification, diagnostic approach, and general aspects. J Pediatr Orthop B 6:159–166

    Article  CAS  PubMed  Google Scholar 

  12. Moessinger AC (1983) Fetal akinesia deformation sequence: an animal model. Pediatrics 72:857–863

    Article  CAS  PubMed  Google Scholar 

  13. Bevan WP, Hall JG, Bamshad M, Staheli LT, Jaffe KM, Song K (2007) Arthrogryposis multiplex congenita (amyoplasia): an orthopaedic perspective. J Pediatr Orthop 27:594–600. https://doi.org/10.1097/BPO.0b013e318070cc76

    Article  PubMed  Google Scholar 

  14. Bamshad M, Van Heest AE, Pleasure D (2009) Arthrogryposis: a review and update. J Bone Joint Surg Am 91(Suppl 4):40–46. https://doi.org/10.2106/JBJS.I.00281

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rink BD (2011) Arthrogryposis: a review and approach to prenatal diagnosis. Obstet Gynecol Surv 66:369–377. https://doi.org/10.1097/OGX.0b013e31822bf5bb

    Article  PubMed  Google Scholar 

  16. Ferguson J, Wainwright A (2013) Arthrogryposis. Orthop. Trauma 27:171–180. https://doi.org/10.1016/j.mporth.2013.03.004

    Article  Google Scholar 

  17. Dorado E, Herrerin J, Ramirez I, Huerta L, Caceres D (2022) Caracterizacion antropológica de una población medieval: el cementerio mudéjar de Uceda (Guadalajara). Oppidium 18:273–292

    Google Scholar 

  18. Lovejoy CO (1985) Dental wear in the libben population: its functional pattern and role in the determination of adult skeletal age at death. Am J Phys Anthropol 68:47–56. https://doi.org/10.1002/ajpa.1330680105

    Article  CAS  PubMed  Google Scholar 

  19. Brothwell DR (1981) Digging up bones. The excavation, treatment and study of human skeletal remains. Cornell University Press, Ithaca, NY

  20. Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains. Proceeding, Seminar at the Field Museum of Natural History, Arkansas Archaeological Survey, Fayetteville, AR

  21. Nunes de Mendonça MC (1998) Contribución para la identificación humana a partir del estudio de las estructuras óseas. Determinación de la talla a través de la longitud de los huesos largos. Thesis, Universidad Complutense de Madrid

  22. Otto AW (1841) Monstrum humanum extremitatibus incurvatus. Monstrorum Sexcentorum descriptio anatomica in Vratislaviae Museum. Anatomico-Pathologieum, Breslau

  23. Kite JH (1955) Arthrogryposis multiplex congenita; review of fifty-four cases. South Med J 48:1141–1146

    Article  CAS  PubMed  Google Scholar 

  24. Lee Friedlander H, Westin GW, Wood WL (1968) Arthrogryposis Multiplex Congenita: a review of forty-five cases. J Bone Joint Surg 50:89–112. https://doi.org/10.2106/00004623-196850010-00006

    Article  Google Scholar 

  25. Greggi T, Martikos K, Pipitone E, Lolli F, Vommaro F, Maredi E, Cervellati S, di Silvestre M (2010) Surgical treatment of scoliosis in a rare disease: arthrogryposis. Scoliosis 5:24. https://doi.org/10.1186/1748-7161-5-24

    Article  PubMed  PubMed Central  Google Scholar 

  26. Witters I, Moerman P, Fryns JP (2002) Fetal akinesia deformation sequence: a study of 30 consecutive in utero diagnoses. Am J Med Genet 113:23–28. https://doi.org/10.1002/ajmg.10698

    Article  PubMed  Google Scholar 

  27. Dalton P, Clover L, Wallerstein R, Stewart H, Genzel-Boroviczeny O, Dean A, Vincent A (2006) Fetal arthrogryposis and maternal serum antibodies. Neuromuscul Disord 16:481–491. https://doi.org/10.1016/j.nmd.2006.05.015

    Article  PubMed  Google Scholar 

  28. Reimann J, Jacobson L, Vincent A, Kornblum C (2009) Endplate destruction due to maternal antibodies in arthrogryposis multiplex congenita. Neurology 73:1806–1808. https://doi.org/10.1212/WNL.0b013e3181c34a65

    Article  CAS  PubMed  Google Scholar 

  29. Staheli LT, Hall JG, Jaffe KM, Paholke DO (1998) Arthrogryposis: a text atlas. Cambridge University Press, New York

    Google Scholar 

  30. Kalampokas E, Kalampokas T, Sofoudis C, Deligeoroglou E, Botsis D (2012) Diagnosing arthrogryposis multiplex congenital: a review. ISRN Obstet Gynecol 2012:264918. https://doi.org/10.5402/2012/264918

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hall JG (1986) Analysis of Pena Shokeir phenotype. Am J Med Genet 25:99–117. https://doi.org/10.1002/ajmg.1320250112

    Article  CAS  PubMed  Google Scholar 

  32. Gordon N (1998) Artrhrogryposis multiplex congenita. Brain Dev 20:507–511. https://doi.org/10.1016/s0387-7604(98)00037-0

    Article  CAS  PubMed  Google Scholar 

  33. Latypova X, Creadore SG, Dahan-Oliel N et al (2021) A Genomic approach to delineating the occurrence of scoliosis in arthrogryposis multiplex congenita. Genes (Basel) 12:1052. https://doi.org/10.3390/genes12071052

    Article  CAS  PubMed  Google Scholar 

  34. Gomes C, Magaña C, Dorado E, Ruiz E, Palomo S, Lopez Parra AM et al (2015) Study of medieval critical samples – a genetic approach to the study of the Mudéjar Community. Forensic Sci Int Genet Suppl Ser 5:e193–e195. https://doi.org/10.1016/j.fsigss.2015.09.078

    Article  Google Scholar 

  35. Polizzi A, Husony SM, Vincent A (2000) Teratogen update: maternal myasthenia gravis as a cause of congenital arthrogryposis. Teratology 62:332–341. https://doi.org/10.1002/1096-9926(200011)62:5%3c332::AID-TERA7%3e3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  36. Obarsky TP, Fardal PM, Busch CR, Leier CV (2005) Stenotic aortic and mitral valves in three adult brothers with arthogryposis multiplex congenital. Am J Cardiol 96:464–466. https://doi.org/10.1016/j.amjcard.2005.03.102

    Article  Google Scholar 

  37. Dequeker J, Fabry G, Vanopdenbosch L (2001) Hyeronimus Bosch (1450–1516): paleopathology of medieval disabled and its relation to the Bone and Joint Decade 2000–2010. Isr Med Assoc J 3:864–871

    CAS  PubMed  Google Scholar 

  38. Rosenkranz E (1905) Ueber kongenitale Kontrakturen der oberen Extremitäten (im Anschluß an die Mitteilung eines einschlägigen Falles). Z Orthop Chir 14:52–93

    Google Scholar 

  39. Stern WG (1923) Arthrogryposis Multiplex Congenita. JAMA 81:1507–1510. https://doi.org/10.1001/jama.1923.02650180025009

    Article  Google Scholar 

  40. Sheldon W (1932) Amyoplasia Congenita: (Multiple congenital articular rigidity: Arthrogryposis multiplex congenita). Arch Dis Child 7:117–136. https://doi.org/10.1136/adc.7.39.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anderson T, Glyn Thomas T (1997) A posible case of Arthrogriposis Multiplex from Medieval Canterbury. Int J Osteoarchaeol 7:181–185. https://doi.org/10.1002/(SICI)1099-1212(199703)7:2%3c181::AID-OA327%3e3.0.CO;2-P

    Article  Google Scholar 

  42. Báez S, Herrera P, Meza A, Sanchez G (2009) Un posible caso de Artrogriposis Múltiple Congénita. In: Mansilla J, Meza A (eds) Estudios de Antropología Biológica, 14. Instituto de Investigaciones Antropológicas, Mexico DF, pp 93–99

    Google Scholar 

  43. Haenisch GF (1925) Fortschr Geb Röntgenstr 33:679

    Google Scholar 

  44. Schenck RC Jr, Goodnight JM (1996) Osteochondritis dissecans. J Bone Joint Surg Am 78:439–456

    Article  PubMed  Google Scholar 

  45. Fuchs K, Atabiev BCh, Witzmann F, Gresky J (2021) Towards a definition of Ancient Rare Diseases (ARD): presenting a complex case of probable Legg-Calvé-Perthes Disease from the North Caucasian Bronze Age (2200–1650 cal BCE). Int J Paleopathol 32:61–73. https://doi.org/10.1016/j.ijpp.2020.11.004

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Enrique Dorado-Fernandez, Jesus Herrerin-Lopez, Ildefonso Ramos-Gonzalez, Loreto Parro-Gonzalez and Albert Isidro-LLorens. The first draft of the manuscript was written by Albert Isidro LLorens and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Albert Isidro-Llorens.

Ethics declarations

Ethics approval

The study did not require ethics approval. The study on human remains was carried out in accordance with the ethical standards contained in different international consensus documents.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorado-Fernández, E., Herrerín-López, J., Ramírez-González, I. et al. Survival in Mudejar Spain in the Middle Ages (thirteenth–fourteenth centuries): Ancient Rare Diseases—an uncommon diagnosis in archaeological human remains. International Orthopaedics (SICOT) 47, 2869–2875 (2023). https://doi.org/10.1007/s00264-023-05863-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-023-05863-1

Keywords

Navigation