Skip to main content

Advertisement

Log in

Correlation between posterior paraspinal muscle atrophy and lumbar intervertebral disc degeneration in patients with chronic low back pain

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Although enormous studies have been devoted to solving the problem of intervertebral disc degeneration/herniation, little attention is paid to the effect of paraspinal muscles on it. We aimed to investigate the correlation between paraspinal muscle atrophy and lumbar disc degeneration to recognize paraspinal muscle atrophy and its importance to the spine.

Patients and methods

A total of 107 patients were enrolled in the study (65 females, 42 males; age 50.87 ± 15.391 years old). Cross-sectional area, functional cross-sectional area, and fatty infiltration of the posterior paraspinal muscles were measured at the level of L4/5, and the degree of facet joint degeneration was evaluated at the levels of L3/4, L4/5, and L5/S1 by MRI. After controlling the confounding factors by multiple linear regression, the correlations among paraspinal muscle atrophy, disc degeneration, and facet joint degeneration were analyzed. Meanwhile, Pearson/Spearson rank analysis was used to analyze the correlation between clinical symptoms (VAS and ODI) and paraspinal muscle atrophy.

Results

There was a strong correlation between paraspinal muscle atrophy and disc degeneration after controlling the confounding factors (p < 0.05, R > 0.5). There was a weak correlation between paraspinal muscle atrophy and facet joint degeneration (p < 0.05, R < 0.5). There was a significant correlation between facet joint degeneration and intervertebral disc degeneration (p < 0.05, R > 0.7). The fatty infiltration of paraspinal muscle was weakly correlated with ODI (p < 0.05, R < 0.3), but VAS was not.

Conclusions

The degree of paraspinal muscle atrophy increased with lumbar disc degeneration and facet joint degeneration and fatty infiltration of multifidus was more susceptible to weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Any data of the patients included in the study are available if required.

References

  1. Kreiner DS, Matz P, Bono CM, Cho CH, Easa JE, Ghiselli G, Ghogawala Z, Reitman CA, Resnick DK, Watters WC 3rd, Annaswamy TM, Baisden J, Bartynski WS, Bess S, Brewer RP, Cassidy RC, Cheng DS, Christie SD, Chutkan NB, Cohen BA, Dagenais S, Enix DE, Dougherty P, Golish SR, Gulur P, Hwang SW, Kilincer C, King JA, Lipson AC, Lisi AJ, Meagher RJ, O’Toole JE, Park P, Pekmezci M, Perry DR, Prasad R, Provenzano DA, Radcliff KE, Rahmathulla G, Reinsel TE, Rich RL Jr, Robbins DS, Rosolowski KA, Sembrano JN, Sharma AK, Stout AA, Taleghani CK, Tauzell RA, Trammell T, Vorobeychik Y, Yahiro AM (2020) Guideline summary review: an evidence-based clinical guideline for the diagnosis and treatment of low back pain. Spine J 20:998–1024. https://doi.org/10.1016/j.spinee.2020.04.006

    Article  PubMed  Google Scholar 

  2. Sive JI, Baird P, Jeziorsk M, Watkins A, Hoyland JA, Freemont AJ (2002) Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol 55:91–97. https://doi.org/10.1136/mp.55.2.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoy D, March L, Brooks P, Blyth F, Woolf A, Bain C, Williams G, Smith E, Vos T, Barendregt J, Murray C, Burstein R, Buchbinder R (2014) The global burden of low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis 73:968–974. https://doi.org/10.1136/annrheumdis-2013-204428

    Article  PubMed  Google Scholar 

  4. Daly C, Ghosh P, Jenkin G, Oehme D, Goldschlager T (2016) A review of animal models of intervertebral disc degeneration: pathophysiology, regeneration, and translation to the clinic. Biomed Res Int 2016:5952165. https://doi.org/10.1155/2016/5952165

    Article  PubMed  PubMed Central  Google Scholar 

  5. Richardson SM, Mobasheri A, Freemont AJ, Hoyland JA (2007) Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies. Histol Histopathol 22:1033–1041. https://doi.org/10.14670/hh-22.1033

    Article  CAS  PubMed  Google Scholar 

  6. Luoma K, Riihimäki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A (2000) Low back pain in relation to lumbar disc degeneration. Spine 25:487–492. https://doi.org/10.1097/00007632-200002150-00016

    Article  CAS  PubMed  Google Scholar 

  7. Panjabi MM (1992) The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord 5:383–389. https://doi.org/10.1097/00002517-199212000-00001

    Article  CAS  PubMed  Google Scholar 

  8. Beasley LE, Koster A, Newman AB, Javaid MK, Ferrucci L, Kritchevsky SB, Kuller LH, Pahor M, Schaap LA, Visser M, Rubin SM, Goodpaster BH, Harris TB (2009) Inflammation and race and gender differences in computerized tomography-measured adipose depots. Obesity (Silver Spring) 17:1062–1069. https://doi.org/10.1038/oby.2008.627

    Article  PubMed  Google Scholar 

  9. Hamrick MW, McGee-Lawrence ME, Frechette DM (2016) Fatty infiltration of skeletal muscle: mechanisms and comparisons with bone marrow adiposity. Front Endocrinol (Lausanne) 7:69. https://doi.org/10.3389/fendo.2016.00069

    Article  PubMed  Google Scholar 

  10. Rivas DA, McDonald DJ, Rice NP, Haran PH, Dolnikowski GG, Fielding RA (2016) Diminished anabolic signaling response to insulin induced by intramuscular lipid accumulation is associated with inflammation in aging but not obesity. Am J Physiol Regul Integr Comp Physiol 310:R561-569. https://doi.org/10.1152/ajpregu.00198.2015

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sun D, Liu P, Cheng J, Ma Z, Liu J, Qin T (2017) Correlation between intervertebral disc degeneration, paraspinal muscle atrophy, and lumbar facet joints degeneration in patients with lumbar disc herniation. BMC Musculoskelet Disord 18:167. https://doi.org/10.1186/s12891-017-1522-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Altinkaya N, Cekinmez M (2016) Lumbar multifidus muscle changes in unilateral lumbar disc herniation using magnetic resonance imaging. Skeletal Radiol 45:73–77. https://doi.org/10.1007/s00256-015-2252-z

    Article  PubMed  Google Scholar 

  13. Faur C, Patrascu JM, Haragus H, Anglitoiu B (2019) Correlation between multifidus fatty atrophy and lumbar disc degeneration in low back pain. BMC Musculoskelet Disord 20:414. https://doi.org/10.1186/s12891-019-2786-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Teichtahl AJ, Urquhart DM, Wang Y, Wluka AE, O’Sullivan R, Jones G, Cicuttini FM (2016) Lumbar disc degeneration is associated with modic change and high paraspinal fat content - a 3.0T magnetic resonance imaging study. BMC Musculoskelet Disord 17:439. https://doi.org/10.1186/s12891-016-1297-z

    Article  PubMed  PubMed Central  Google Scholar 

  15. Özcan-Ekşi EE, Ekşi M, Akçal MA (2019) Severe lumbar intervertebral disc degeneration is associated with modic changes and fatty infiltration in the paraspinal muscles at all lumbar levels, except for L1–L2: a cross-sectional analysis of 50 symptomatic women and 50 age-matched symptomatic men. World Neurosurg 122:e1069–e1077. https://doi.org/10.1016/j.wneu.2018.10.229

    Article  PubMed  Google Scholar 

  16. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–1878. https://doi.org/10.1097/00007632-200109010-00011

    Article  CAS  PubMed  Google Scholar 

  17. Shi L, Yan B, Jiao Y, Chen Z, Zheng Y, Lin Y, Cao P (2022) Correlation between the fatty infiltration of paraspinal muscles and disc degeneration and the underlying mechanism. BMC Musculoskelet Disord 23:509. https://doi.org/10.1186/s12891-022-05466-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fujiwara A, Tamai K, Yamato M, An HS, Yoshida H, Saotome K, Kurihashi A (1999) The relationship between facet joint osteoarthritis and disc degeneration of the lumbar spine: an MRI study. Eur Spine J 8:396–401. https://doi.org/10.1007/s005860050193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng Q, He Y, Dong S, Zhao X, Chen Z, Song Z, Chang G, Yang F, Wang Y (2014) Optimal cut-off values of BMI, waist circumference and waist:height ratio for defining obesity in Chinese adults. Br J Nutr 112:1735–1744. https://doi.org/10.1017/s0007114514002657

    Article  CAS  PubMed  Google Scholar 

  20. Tseng CH, Chong CK, Chan TT, Bai CH, You SL, Chiou HY, Su TC, Chen CJ (2010) Optimal anthropometric factor cutoffs for hyperglycemia, hypertension and dyslipidemia for the Taiwanese population. Atherosclerosis 210:585–589. https://doi.org/10.1016/j.atherosclerosis.2009.12.015

    Article  CAS  PubMed  Google Scholar 

  21. Yu J, Tao Y, Tao Y, Yang S, Yu Y, Li B, Jin L (2016) Optimal cut-off of obesity indices to predict cardiovascular disease risk factors and metabolic syndrome among adults in Northeast China. BMC Public Health 16:1079. https://doi.org/10.1186/s12889-016-3694-5

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen X, Cui J, Zhang Y, Peng W (2020) The association between BMI and health-related physical fitness among Chinese college students: a cross-sectional study. BMC Public Health 20:444. https://doi.org/10.1186/s12889-020-08517-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bashkuev M, Reitmaier S, Schmidt H (2020) Relationship between intervertebral disc and facet joint degeneration: a probabilistic finite element model study. J Biomech 102:109518. https://doi.org/10.1016/j.jbiomech.2019.109518

    Article  PubMed  Google Scholar 

  24. Lv B, Yuan J, Ding H, Wan B, Jiang Q, Luo Y, Xu T, Ji P, Zhao Y, Wang L, Wang Y, Huang A, Yao X (2019) Relationship between endplate defects, modic change, disc degeneration, and facet joint degeneration in patients with low back pain. Biomed Res Int 2019:9369853. https://doi.org/10.1155/2019/9369853

    Article  PubMed  PubMed Central  Google Scholar 

  25. Song Q, Liu X, Chen DJ, Lai Q, Tang B, Zhang B, Dai M, Wan Z (2019) Evaluation of MRI and CT parameters to analyze the correlation between disc and facet joint degeneration in the lumbar three-joint complex. Medicine (Baltimore) 98:e17336. https://doi.org/10.1097/md.0000000000017336

    Article  PubMed  Google Scholar 

  26. Honkanen T, Mäntysaari M, Leino T, Avela J, Kerttula L, Haapamäki V, Kyröläinen H (2019) Cross-sectional area of the paraspinal muscles and its association with muscle strength among fighter pilots: a 5-year follow-up. BMC Musculoskelet Disord 20:170. https://doi.org/10.1186/s12891-019-2551-y

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lee HJ, Lim WH, Park JW, Kwon BS, Ryu KH, Lee JH, Park YG (2012) The relationship between cross sectional area and strength of back muscles in patients with chronic low back pain. Ann Rehabil Med 36:173–181. https://doi.org/10.5535/arm.2012.36.2.173

    Article  PubMed  PubMed Central  Google Scholar 

  28. Udermann BE, Mayer JM, Graves JE, Murray SR (2003) Quantitative assessment of lumbar paraspinal muscle endurance. J Athl Train 38:259–262

    PubMed  PubMed Central  Google Scholar 

  29. Maughan RJ (1984) Relationship between muscle strength and muscle cross-sectional area. Implications Training Sports Med 1:263–269. https://doi.org/10.2165/00007256-198401040-00002

    Article  CAS  PubMed  Google Scholar 

  30. Bajek S, Bobinac D, Bajek G, Vranić TS, Lah B, Dragojević DM (2000) Muscle fiber type distribution in multifidus muscle in cases of lumbar disc herniation. Acta Med Okayama 54:235–241. https://doi.org/10.18926/amo/32283

    Article  CAS  PubMed  Google Scholar 

  31. Reid KF, Fielding RA (2012) Skeletal muscle power: a critical determinant of physical functioning in older adults. Exerc Sport Sci Rev 40:4–12. https://doi.org/10.1097/JES.0b013e31823b5f13

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yaltırık K, Güdü BO, Işık Y, Altunok Ç, Tipi U, Atalay B (2018) Volumetric muscle measurements indicate significant muscle degeneration in single-level disc herniation patients. World Neurosurg 116:e500–e504. https://doi.org/10.1016/j.wneu.2018.05.019

    Article  PubMed  Google Scholar 

  33. Franke J, Hesse T, Tournier C, Schuberth W, Mawrin C, LeHuec JC, Grasshoff H (2009) Morphological changes of the multifidus muscle in patients with symptomatic lumbar disc herniation. J Neurosurg Spine 11:710–714. https://doi.org/10.3171/2009.7.Spine08448

    Article  PubMed  Google Scholar 

  34. Hodges P, Holm AK, Hansson T, Holm S (2006) Rapid atrophy of the lumbar multifidus follows experimental disc or nerve root injury. Spine 31:2926–2933. https://doi.org/10.1097/01.brs.0000248453.51165.0b

    Article  PubMed  Google Scholar 

  35. Crock HV (1986) Internal disc disruption. A challenge to disc prolapse fifty years on. Spine 11:650–653

    Article  CAS  PubMed  Google Scholar 

  36. Hodges PW (2000) The role of the motor system in spinal pain: implications for rehabilitation of the athlete following lower back pain. J Sci Med Sport 3:243–253. https://doi.org/10.1016/s1440-2440(00)80033-x

    Article  CAS  PubMed  Google Scholar 

  37. Agha O, Mueller-Immergluck A, Liu M, Zhang H, Theologis AA, Clark A, Kim HT, Liu X, Feeley BT, Bailey JF (2020) Intervertebral disc herniation effects on multifidus muscle composition and resident stem cell populations. JOR Spine 3:e1091. https://doi.org/10.1002/jsp2.1091

    Article  PubMed  PubMed Central  Google Scholar 

  38. Crawford RJ, Filli L, Elliott JM, Nanz D, Fischer MA, Marcon M, Ulbrich EJ (2016) Age- and level-dependence of fatty infiltration in lumbar paravertebral muscles of healthy volunteers. AJNR Am J Neuroradiol 37:742–748. https://doi.org/10.3174/ajnr.A4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wilke HJ, Wolf S, Claes LE, Arand M, Wiesend A (1995) Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study. Spine 20:192–198. https://doi.org/10.1097/00007632-199501150-00011

    Article  CAS  PubMed  Google Scholar 

  40. Ward SR, Kim CW, Eng CM, Gottschalk LJt, Tomiya A, Garfin SR, Lieber RL (2009) Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. J Bone Joint Surg Am 91:176–185. https://doi.org/10.2106/jbjs.G.01311

    Article  PubMed  PubMed Central  Google Scholar 

  41. Macintosh JE, Bogduk N (1987) 1987 Volvo award in basic science. The morphology of the lumbar erector spinae. Spine 12:658–668. https://doi.org/10.1097/00007632-198709000-00004

    Article  CAS  PubMed  Google Scholar 

  42. Widmer J, Cornaz F, Scheibler G, Spirig JM, Snedeker JG, Farshad M (2020) Biomechanical contribution of spinal structures to stability of the lumbar spine-novel biomechanical insights. Spine J 20:1705–1716. https://doi.org/10.1016/j.spinee.2020.05.541

    Article  PubMed  Google Scholar 

  43. Morris P, Ali K, Merritt M, Pelletier J, Macedo LG (2020) A systematic review of the role of inflammatory biomarkers in acute, subacute and chronic non-specific low back pain. BMC Musculoskelet Disord 21:142. https://doi.org/10.1186/s12891-020-3154-3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank for the instructions from professor An Qin in Shanghai Ninth People’s Hospital.

Funding

The study received financial support from the Applied Basic Research Foundation of Guangdong Province (no. 2020A1515011388); Postdoctoral Research Foundation of China (no. 2021M703719); and Foundation of Nanchang high-level scientific and technological innovation talents (Hongkezi (2021) no. 156).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Ziying Cheng, Yuxi Li, Ming Li, Junshen Huang, Jiajun Huang, Yuwei Liang, Shixin Lu, Changchun Liang, Tong Xing, Kaihui Su, and Guoming Wen. Ziying Cheng, Yuxi Li, Weike Zeng, and Lin Huang drafted of the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Weike Zeng or Lin Huang.

Ethics declarations

Ethics approval and consent to participate

Participants were recruited from orthopedic and radiology outpatients, and the information we needed to conduct the study via face-to-face. Written consent was obtained before the examination of all participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 941 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Li, Y., Li, M. et al. Correlation between posterior paraspinal muscle atrophy and lumbar intervertebral disc degeneration in patients with chronic low back pain. International Orthopaedics (SICOT) 47, 793–801 (2023). https://doi.org/10.1007/s00264-022-05621-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-022-05621-9

Keywords

Navigation