Skip to main content
Log in

Hip structure analysis and femoral osteodensitometry in aged postmenopausal women with hip osteoarthritis and femoral neck fracture

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract 

Purpose

Osteoarthritis (OA), osteoporosis, and bone fractures are frequent aging-related conditions. Regardless of the growing research interest in the effects of hip OA on femoral fracture risk, data about the region specificity of osteodensitometric and hip structure analysis (HSA) parameters of the proximal femora are lacking in aged postmenopausal women with hip OA compared to individuals with femoral neck fragility fracture.

Methods

This study included 76 postmenopausal women admitted for total hip arthroplasty due to non-traumatic femoral neck fracture (FN_Fx group, n = 39) and hip osteoarthritis (OA group, n = 37).

Results

Osteodensitometric parameters differed significantly between the OA and FN_Fx groups, depicting lower bone mineral density in the FN_Fx group (p < 0.05). The most significant increase in these parameters was registered in the intertrochanteric region of the OA group. Moreover, the OA-induced changes in HSA-derived parameters displayed significant regional heterogeneity, with the intertrochanteric region showing the most notable difference between OA and FN_Fx group.

Conclusion

Our data may indicate that OA displayed the most prominent positive effect on the intertrochanteric femoral region, revealing the regional heterogeneity in structural geometry and biomechanical indices of proximal femora in OA individuals. Since we did not observe significant differences in the femoral neck region, we may speculate that OA does not have a substantial protective effect on the femoral neck fracture risk in aged postmenopausal women.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data set generated during this study is available from the corresponding author (DD) upon justified request.

References

  1. Auger JD, Naik AJ, Murakami AM et al (2022) Spatial assessment of femoral neck bone density and microstructure in hip osteoarthritis. Bone Reports 16:101155. https://doi.org/10.1016/j.bonr.2021.101155

    Article  PubMed  Google Scholar 

  2. Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA (2005) Osteoarthritis - an untreatable disease? Nat Rev Drug Discov 4:331–344. https://doi.org/10.1038/nrd1693

    Article  PubMed  CAS  Google Scholar 

  3. Cosman F, de Beur SJ, LeBoff MS et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–2381. https://doi.org/10.1007/s00198-014-2794-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ha YC, Il YJ, Yoo J, Park KS (2019) Effects of hip structure analysis variables on hip fracture: a propensity score matching study. J Clin Med 8:1507. https://doi.org/10.3390/jcm8101507

    Article  PubMed Central  CAS  Google Scholar 

  5. Narloch J, Glinkowski WM (2019) Osteoarthritis changes hip geometry and biomechanics regardless of bone mineral density—a quantitative computed tomography study. J Clin Med 8:669. https://doi.org/10.3390/jcm8050669

    Article  PubMed Central  Google Scholar 

  6. Bultink IEM, Lems WF (2013) Osteoarthritis and osteoporosis: what is the overlap? Curr Rheumatol Rep 15:328. https://doi.org/10.1007/s11926-013-0328-0

    Article  PubMed  CAS  Google Scholar 

  7. Stewart A, Black AJ (2000) Bone mineral density in osteoarthritis. Curr Opin Rheumatol 12:464–467. https://doi.org/10.1097/00002281-200009000-00021

    Article  PubMed  CAS  Google Scholar 

  8. Arden N, Nevitt MC, Lane N et al (1999) Osteoarthritis and risk of falls, rates of bone loss, and osteoporotic fractures. Arthritis Rheum 42:1378–1385. https://doi.org/10.1002/1529-0131(199907)42:7%3C1378::aid-anr11%3E3.0.co;2-i

    Article  PubMed  CAS  Google Scholar 

  9. Mäkinen TJ, Alm JJ, Laine H et al (2007) The incidence of osteopenia and osteoporosis in women with hip osteoarthritis scheduled for cementless total joint replacement. Bone 40:1041–1047. https://doi.org/10.1016/j.bone.2006.11.013

    Article  PubMed  Google Scholar 

  10. Chaganti R, Parimi N, Lang T et al (2010) Bone mineral density and prevalent osteoarthritis of the Hip in Older Men for the Osteoporotic Fractures in Men (MrOS) Study Group. Osteoporos Int 21:1307–1316. https://doi.org/10.1007/s00198-009-1105-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Castaño Betancourt MC, Van der Linden JC, Rivadeneira F et al (2009) Dual energy x-ray absorptiometry analysis contributes to the prediction of hip osteoarthritis progression. Arthritis Res Ther 11:1–8. https://doi.org/10.1186/ar2845

    Article  Google Scholar 

  12. Celi M, Rao C, Scialdoni A et al (2013) Bone mineral density evaluation in osteoporosis: why yes and why not? Aging Clin Exp Res 25:47–49. https://doi.org/10.1007/s40520-013-0074-1

    Article  Google Scholar 

  13. Djonić D, Milovanović P, Djurić M (2013) Basis of bone strength vs. bone fragility: a review of determinants of age-related hip fracture risk. Srp Arh Celok Lek 141:548–552. https://doi.org/10.2298/SARH1308548D

    Article  PubMed  Google Scholar 

  14. Kaptoge S, Beck TJ, Reeve J et al (2008) Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23:1892–1904. https://doi.org/10.1359/jbmr.080802

    Article  PubMed  PubMed Central  Google Scholar 

  15. Djonic D, Milovanovic P, Nikolic S et al (2011) Inter-sex differences in structural properties of aging femora: implications on differential bone fragility: a cadaver study. J Bone Miner Metab 29:449–457. https://doi.org/10.1007/s00774-010-0240-x

    Article  PubMed  Google Scholar 

  16. Javaid MK, Lane NE, Mackey DC et al (2009) Changes in proximal femoral mineral geometry precede the onset of radiographic hip osteoarthritis: the study of osteoporotic fractures. Arthritis Rheum 60:2028–2036. https://doi.org/10.1002/art.24639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jadzic J, Milovanovic P, Cvetkovic D et al (2021) Mechano-structural alteration in proximal femora of individuals with alcoholic liver disease: implications for increased bone fragility. Bone 150:116020. https://doi.org/10.1016/j.bone.2021.116020

    Article  PubMed  CAS  Google Scholar 

  18. Beck TJ (2007) Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep 5:49–55. https://doi.org/10.1007/s11914-007-0002-4

    Article  PubMed  Google Scholar 

  19. Finkelstein JS, Brockwell SE, Mehta V et al (2008) Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J Clin Endocrinol Metab 93:861–868. https://doi.org/10.1210/jc.2007-1876

    Article  PubMed  CAS  Google Scholar 

  20. Aguado-Maestro I, Panteli M, García-Alonso M et al (2017) Hip osteoarthritis as a predictor of the fracture pattern in proximal femur fractures. Injury 48:S41–S46. https://doi.org/10.1016/j.injury.2017.08.037

    Article  PubMed  Google Scholar 

  21. Edwards MH, Paccou J, Ward KA et al (2017) The relationship of bone properties using high resolution peripheral quantitative computed tomography to radiographic components of hip osteoarthritis. Osteoarthr Cartil 25:1478–1483. https://doi.org/10.1016/j.joca.2017.03.011

    Article  CAS  Google Scholar 

  22. Djuric M, Zagorac S, Milovanovic P et al (2013) Enhanced trabecular micro-architecture of the femoral neck in hip osteoarthritis vs. healthy controls: a micro-computer tomography study in postmenopausal women. Int Orthop 37:21–26. https://doi.org/10.1007/s00264-012-1713-4

    Article  PubMed  Google Scholar 

  23. Franklin J, Englund M, Ingvarsson T, Lohmander S (2010) The association between hip fracture and hip osteoarthritis: a case-control study. BMC Musculoskelet Disord 11:274. https://doi.org/10.1186/1471-2474-11-274

    Article  PubMed  PubMed Central  Google Scholar 

  24. Biyani A, Simison AJ, Klenerman L (1995) Intertrochanteric fractures of the femur and osteoarthritis of the ipsilateral hip. Acta Orthop Belg 61(2):83–91. http://www.actaorthopaedica.be/assets/679/7597894.pdf

    PubMed  CAS  Google Scholar 

  25. Alpantaki K, Papadaki C, Raptis K et al (2020) Gender and age differences in hip fracture types among elderly: a retrospective cohort study. Maedica Buchar 15:185–190. https://doi.org/10.26574/maedica.2020.15.2.185

    Article  Google Scholar 

  26. Tanner DA, Kloseck M, Crilly RG et al (2010) Hip fracture types in men and women change differently with age. BMC Geriatr 10:2007–2010. https://doi.org/10.1186/1471-2318-10-12

    Article  Google Scholar 

  27. Calderazzi F, Groppi G, Ricotta A, Ceccarelli F (2014) Does hip osteoarthritis have a protective effect against proximal femoral fractures? A retrospective study. HIP Int 24:231–236. https://doi.org/10.5301/hipint.5000116

    Article  PubMed  Google Scholar 

  28. Maluta T, Toso G, Negri S et al (2019) Correlation between hip osteoarthritis and proximal femoral fracture site: could it be protective for intracapsular neck fractures? A retrospective study on 320 cases. Osteoporos Int 30:1591–1596. https://doi.org/10.1007/s00198-019-05015-5

    Article  PubMed  Google Scholar 

  29. Brown SJ, Pollintine P, Powell DE et al (2002) Regional differences in mechanical and material properties of femoral head cancellous bone in health and osteoarthritis. Calcif Tissue Int 71:227–234. https://doi.org/10.1007/s00223-001-2102-y

    Article  PubMed  CAS  Google Scholar 

  30. Sun S, Ma H, Liu C, Huang C (2008) Difference in femoral head and neck material properties between osteoarthritis and osteoporosis. Clin Biomech 23:S39-47. https://doi.org/10.1016/j.clinbiomech.2007.11.018

    Article  Google Scholar 

  31. Hardcastle SA, Dieppe P, Gregson CL et al (2014) Osteophytes, enthesophytes, and high bone mass: a bone-forming triad with potential relevance in osteoarthritis. Arthritis Rheumatol 66:2429–2439. https://doi.org/10.1002/art.38729

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lequesne M (2006) From “periarthritis” to hip “rotator cuff” tears. Trochanteric tendinobursitis Jt Bone Spine 73:344–348. https://doi.org/10.1016/j.jbspin.2006.04.002

    Article  Google Scholar 

  33. Elkholy AH, Ghista D, D’Souza F, Kutty M (2005) Stress analysis of normal and osteoarthritic femur using finite element analysis. Int J Comput Applications Technol 22:205–211. https://doi.org/10.1504/IJCAT.2005.006958

    Article  Google Scholar 

  34. Duan Y, Beck TJ, Wang XF, Seeman E (2003) Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res 18:1766–1774. https://doi.org/10.1359/jbmr.2003.18.10.1766

    Article  PubMed  Google Scholar 

Download references

Funding

This article was supported by the Science Fund of the Republic of Serbia (IDEAS program, BoFraM group, project no. 7749444).

Author information

Authors and Affiliations

Authors

Contributions

All authors read the proposed manuscript and give their substantial contribution to this study. Particular contribution of the authors is listed as follows: ZS and DD designed the study and carried out the patient recruitment. JJ and DD carried out the osteodensitometry and hip structure analysis; JJ, MD, and DD performed statistical analysis; ZS, JJ, and DD interpreted the data; JJ wrote the original draft. ZS, MD, and DD critically reviewed and edited the manuscript. MD took care of project administration/funding; DD provided supervision needed for effective conducting of all study activities. All authors (JJ, ZS, MD, and DD) approved the final version of the manuscript.

Corresponding author

Correspondence to Danijela Djonic.

Ethics declarations

Ethics approval

This study was in accordance with the ethical standards of the Ethics Committee of the Faculty of Medicine, University of Belgrade, Serbia, and under the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to participate

All persons gave their informed consent for their inclusion in the study.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadzic, J., Zagorac, S., Djuric, M. et al. Hip structure analysis and femoral osteodensitometry in aged postmenopausal women with hip osteoarthritis and femoral neck fracture. International Orthopaedics (SICOT) 46, 2747–2755 (2022). https://doi.org/10.1007/s00264-022-05602-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-022-05602-y

Keywords

Navigation