Skip to main content

Autologous bone marrow-derived mesenchymal stem cells provide complete regeneration in a rabbit model of the Achilles tendon bundle rupture



To ascertain the role of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in the tendon regeneration.


The study was conducted on 58 Achilles tendons from 29 laboratory Chinchilla adult rabbits. The central bundles of 48 tendons were partially removed and substituted with a tissue-engineered construct consisting of a collagen sponge either loaded with BM-MSCs (n = 24) or cell free (n = 24), placed inside a Vicryl mesh tube. The ends of the resected tendon were inserted in the construct to reach a direct contact with the sponge and sutured to the tube. The animals were sacrificed three and six months post-surgery. Ten intact tendons from five rabbits were used as an untreated control. The tissue samples (n = 30) were stained with haematoxylin and eosin, Picrosirius red, primary antibodies to collagen types I and III and studied by bright-field, phase-contrast, polarized light, and scanning electron microscopies followed by semi-quantitative morphometry.


Six months results of cell-loaded scaffolds demonstrated parallel collagen fibres, spindle-shaped tenocytes, and neoangiogenesis. In the control cell-free group, the injured areas were filled with a nonspecific fibrotic tissue with minor foci of incomplete regeneration. The biomechanical tests of 28 tendons taken from 14 rabbits showed that the stiffness of the cell-based reconstructed tendons increased to 98% of the value for the intact samples.


The obtained results support the hypothesis that the application of BM-MSCs in a tissue-engineered tendon construct leads to the restitution of the tendon tissue.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

The manuscript has data included ES electronic supplementary materials.


  1. 1.

    Nichols AEC, Best KT, Loiselle AE (2019) The cellular basis of fibrotic tendon healing: challenges and opportunities. Transl Res 209:156–168.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Tempfer H, Traweger A (2015) Tendon vasculature in health and disease. Front Physiol 6:330.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Liu L, Hindieh J, Leong DJ, Sun HB (2017) Advances of stem cell based-therapeutic approaches for tendon repair. Journal of orthopaedic translation 9:69–75.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Lui PP (2015) Stem cell technology for tendon regeneration: current status, challenges, and future research directions. Stem cells and cloning : advances and applications 8:163–174.

    Article  Google Scholar 

  5. 5.

    González-Quevedo D, Martínez-Medina I, Campos A, Campos F, Carriel V (2018) Tissue engineering strategies for the treatment of tendon injuries: a systematic review and meta-analysis of animal models. Bone Joint Res 7(4):318–324.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Song YJ, Hua YH (2019) Tendon allograft for treatment of chronic Achilles tendon rupture: a systematic review. Foot Ankle Surg 25(3):252–257.

    Article  PubMed  Google Scholar 

  7. 7.

    Youngstrom DW, Rajpar I, Kaplan DL, Barrett JG (2015) A bioreactor system for in vitro tendon differentiation and tendon tissue engineering. J Orthop Res 33(6):911–918.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Chen C, Hunt KJ (2019) Open reconstructive strategies for chronic Achilles tendon ruptures. Foot Ankle Clin 24(3):425–437.

    Article  PubMed  Google Scholar 

  9. 9.

    Leong DJ, Sun HB (2016) Mesenchymal stem cells in tendon repair and regeneration: basic understanding and translational challenges. Ann N Y Acad Sci 1383(1):88–96.

    Article  PubMed  Google Scholar 

  10. 10.

    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Araki R, Uda M, Hoki Y, Sunayama M et al (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494(7435):100–104.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ouyang HW, Goh JC, Thambyah A, Teoh SH et al (2003) Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng 9(3):431–439.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Yin Z, Guo J, Wu TY, Chen X et al (2016) Differentiation of mesenchymal stem cells augments tendon-like tissue formation and defect repair in vivo. Stem Cells Transl Med 5(8):1106–1116.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Frauz K, Teodoro LFR, Carneiro GD, Cristina da Veiga F et al (2019) Transected tendon treated with a new fibrin sealant alone or associated with adipose-derived stem cells. Cells 8(1):56.

    CAS  Article  PubMed Central  Google Scholar 

  16. 16.

    Bottagisio M, D’Arrigo D, Talò G, Bongio M et al (2019) Achilles tendon repair by decellularized and engineered xenografts in a rabbit model. Stem Cells Int 2019:5267479.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Veronesi F, Borsari V, Contartese D, Xian J et al (2020) The clinical strategies for tendon repair with biomaterials: a review on rotator cuff and Achilles tendons. J Biomed Mater Res B Appl Biomater 108(5):1826–1843.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Maharam E, Yaport M, Villanueva NL, Akinyibi T et al (2015) Rho/Rock signal transduction pathway is required for MSC tenogenic differentiation. Bone Res 3:15015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Oryan A, Sharifi P, Moshiri A, Silver IA (2017) The role of three-dimensional pure bovine gelatin scaffolds in tendon healing, modeling, and remodeling: an in vivo investigation with potential clinical value. Connect Tissue Res 58(5):424–437.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Chen CH, Cao Y, Wu YF, Bais AJ et al (2008) Tendon healing in vivo: gene expression and production of multiple growth factors in early tendon healing period. J Hand Surg Am 33(10):1834–1842.

    Article  PubMed  Google Scholar 

  21. 21.

    Snedeker JG, Foolen J (2017) Tendon injury and repair—a perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater 63:18–36.

    Article  PubMed  Google Scholar 

  22. 22.

    Veronesi F, Pagani S, Torricelli P, Filardo G et al (2018) PRP and MSCs on tenocytes artificial wound healing: an in vitro study comparing fresh and frozen PRP. Histol Histopathol 33(12):1323–1334.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Moreau JE, Chen J, Bramono DS, Volloch V et al (2005) Growth factor induced fibroblast differentiation from human bone marrow stromal cells in vitro. J Orthop Res 23(1):164–174.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Kanaya A, Deie M, Adachi N, Nishimori M et al (2007) Intra-articular injection of mesenchymal stromal cells in partially torn anterior cruciate ligaments in a rat model. Arthroscopy 23(6):610–617.

    Article  PubMed  Google Scholar 

  25. 25.

    Bifari F, Pacelli L, Krampera M (2010) Immunological properties of embryonic and adult stem cells. World J Stem Cells 2(3):50–60.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Chamberlain CS, Saether EE, Aktas E, Vanderby R (2017) Mesenchymal stem cell therapy on tendon/ligament healing. J Cytokine Biol 2(1):112

    Article  Google Scholar 

  27. 27.

    Chailakhyan RK, Shekhter AB, Ivannikov SV, Tel’pukhov VI, et al (2017) Reconstruction of ligament and tendon defects using cell technologies. Bull Exp Biol Med 162(4):563–568.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Stoll C, John T, Conrad C, Lohan A et al (2011) Healing parameters in a rabbit partial tendon defect following tenocyte/biomaterial implantation. Biomaterials 32(21):4806–4815.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Grebenik EA, Istranov LP, Istranova EV, Churbanov SN et al (2019) Chemical cross-linking of xenopericardial biomeshes: a bottom-up study of structural and functional correlations. Xenotransplantation 26(3):e12506.

    Article  PubMed  Google Scholar 

  30. 30.

    Bottagisio M, Lovati AB (2017) A review on animal models and treatments for the reconstruction of Achilles and flexor tendons. J Mater Sci Mater Med 28(3):45.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Schon LC, Gill N, Thorpe M, Davis J et al (2014) Efficacy of a mesenchymal stem cell loaded surgical mesh for tendon repair in rats. J Transl Med 12:110.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Young RG, Butler DL, Weber W, Caplan AI et al (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 16(4):406–413.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Awad HA, Boivin GP, Dressler MR, Smith FN et al (2003) Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 21(3):420–431.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Shekhter AB, Fayzullin AL, Vukolova MN, Rudenko TG et al (2019) Medical applications of collagen and collagen-based materials. Curr Med Chem 26(3):506–516.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Bardakova KN, Grebenik EA, Minaev NV, Churbanov SN et al (2020) Tailoring the collagen film structural properties via direct laser crosslinking of star-shaped polylactide for robust scaffold formation. Mater Sci Eng C Mater Biol Appl 107:110300.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Talò G, D’Arrigo D, Lorenzi S, Moretti M et al (2020) Independent, controllable stretch-perfusion bioreactor chambers to functionalize cell-seeded decellularized tendons. Ann Biomed Eng 48(3):1112–1126.

    Article  PubMed  Google Scholar 

  37. 37.

    Moshiri A, Oryan A, Meimandi-Parizi A (2015) Synthesis, development, characterization and effectiveness of bovine pure platelet gel-collagen-polydioxanone bioactive graft on tendon healing. J Cell Mol Med 19(6):1308–1332.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lipar M, Zdilar B, Kreszinger M, Ćorić M et al (2018) Extracellular matrix supports healing of transected rabbit Achilles tendon. Heliyon 4(9):e00781.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Learn GD, McClellan PE, Knapik DM, Cumsky JL et al (2019) Woven collagen biotextiles enable mechanically functional rotator cuff tendon regeneration during repair of segmental tendon defects in vivo. J Biomed Mater Res B Appl Biomater 107(6):1864–1876.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Voleti PB, Buckley MR, Soslowsky LJ (2012) Tendon healing: repair and regeneration. Annu Rev Biomed Eng 14:47–71.

    CAS  Article  PubMed  Google Scholar 

Download references


This work was supported by the N.F. Gamaleya National Research Center for Epidemiology & Microbiology of the Ministry of Health of the Russian Federation in the part of preparing MSCs and tissue-engineered constructs, by the Ministry of Science and Higher Education within the State assignment FSRC «Crystallography and Photonics» RAS in the part of the SEM analysis, by the Ministry of Science and Higher Education of the Russian Federation under the grant agreement No. 075–15-2021–596 (Megagrant, 2020–220-08–5262) in the part of the biomechanical studies, by the Russian Foundation for Basic Research (Project 18–29-06059) in the part of animal experiments and histological studies.

Author information




Ruben K. Chailakhyan, Elizaveta Kon, Anatoly B. Shekhter, Peter S. Timashev, and Vladimir I. Telpukhov were responsible for the study design. Semyon N. Churbanov, Svetlana Kotova, Alexey L. Fayzullin, and Marina M. Lipina were involved in the literature research and data extraction. Sergey V. Ivannikov, Vladimir I. Telpukhov, Alla G. Grosheva, Dmitry S. Suslin, Nataliya N. Vorobieva, Yury V. Gerasimov, and Semyon N. Churbanov were involved in practical part of the experiment and drafted the manuscript. Elizaveta Kon, Peter S. Timashev, Marina M. Lipina, Alexey V. Lychagin, Alexey L. Fayzullin, and Yury V. Gerasimov critically revised the manuscript up to its final version. All the authors have read and approved the final content of the manuscript.

Corresponding author

Correspondence to Elizaveta Kon.

Ethics declarations

Ethical approval

This study was approved by the institutional review board. The experiments were performed in accordance with the European Convention (Strasbourg, 1986) and the Helsinki Declaration of the World Medical Association on the Humane Treatment of Animals (2000).

Consent to publish

All authors gave their consent for information about themselves to be published in International Orthopedics.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(DOCX 536 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chailakhyan, R.K., Kon, E., Shekhter, A.B. et al. Autologous bone marrow-derived mesenchymal stem cells provide complete regeneration in a rabbit model of the Achilles tendon bundle rupture. International Orthopaedics (SICOT) (2021).

Download citation


  • Tissue engineering
  • Tendon tissue
  • Tendon injury
  • Cell therapy
  • Cell-loaded scaffolds