Skip to main content
Log in

Shortening effect influence of Distal Minimally Invasive Metatarsal Osteotomy in primary metatarsalgia

  • Invited Papers
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

In primary metatarsalgia, Distal Minimally invasive Metatarsal Osteotomy (DMMO) achieves a correct load distribution which is a factor in pain relief, but contrary to the elevation of the metatarsal head, shortening the metatarsal length has no influence on plantar-loading parameters, while the increased metatarsal length is a factor in the development of metatarsalgia. Thus, we hypothesized that metatarsalgia could be partly related to a functional imbalance between bone structure and soft tissues and pain relief after DMMO results from soft tissue relaxation.

Methods

Many authors have highlighted the correlation between joint pressure and periarticular soft tissue tension. To test our hypothesis, we measured intra-operatively the MTPJ pressure of 19 patients suffering from primary metatarsalgia, before and after DMMO. This pressure is being analyzed as a reflection of joint decompression and forefoot soft tissue release. Many authors have highlighted the correlation between joint pressure and periarticular soft tissue tension.

Results

Lower metatarsals presenting metatarsalgia show a significantly lower MTPJ pressure compared to asymptomatic rays, and DMMO induces a significant increase of MTPJ pressure.

Conclusion

Those variations reflect the functional imbalance between bone structure and soft tissue in primary metatarsalgia. The biomechanical rationale of the shortening effect of DMMO could therefore be explained by the release of forefoot soft tissue, which could take part in the pain relief by restoring this balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, YS, upon reasonable request.

Code availability

Not applicable.

References

  1. Espinosa N, Maceira E, Myerson MS (2008) Current concept review: metatarsalgia. Foot Ankle Int 29:871–879. https://doi.org/10.3113/FAI.2008.0000X

    Article  PubMed  Google Scholar 

  2. Fuhrmann RA, Roth A, Venbrocks RA (2005) Metatarsalgie: Differenzialdiagnose und Therapie. Orthop 34:767–775. https://doi.org/10.1007/s00132-005-0831-8

    Article  CAS  Google Scholar 

  3. Henry J, Besse JL, Fessy MH (2011) Distal osteotomy of the lateral metatarsals: a series of 72 cases comparing the Weil osteotomy and the DMMO percutaneous osteotomy. Orthop Traumatol Surg Res 97:S57–S65. https://doi.org/10.1016/j.otsr.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  4. Rivero-Santana A, Perestelo-Pérez L, Garcés G et al (2019) Clinical effectiveness and safety of Weil’s osteotomy and distal metatarsal mini-invasive osteotomy (DMMO) in the treatment of metatarsalgia: a systematic review. Foot Ankle Surg 25:565–570. https://doi.org/10.1016/j.fas.2018.06.004

    Article  PubMed  Google Scholar 

  5. Barouk LS (1996) Die Metatarsalosteotomie nach Weil zur Behandlung der Metatarsalgie. Orthop_de 25:338–344. https://doi.org/10.1007/s001320050034

  6. Dreeben SM, Noble PC, Hammerman S et al (1989) Metatarsal osteotomy for primary metatarsalgia: radiographic and pedobarographic study. Foot Ankle 9:214–218. https://doi.org/10.1177/107110078900900502

    Article  CAS  PubMed  Google Scholar 

  7. Vandeputte G, Dereymaeker G, Steenwerckx A, Peeraer L (2000) The Weil osteotomy of the lesser metatarsals: a clinical and pedobarographic follow-up study. Foot Ankle Int 21:370–374. https://doi.org/10.1177/107110070002100502

    Article  CAS  PubMed  Google Scholar 

  8. Winson IG, Rawlinson J, Broughton NS (1988) Treatment of metatarsalgia by sliding distal metatarsal osteotomy. Foot Ankle 9:2–6. https://doi.org/10.1177/107110078800900102

    Article  CAS  PubMed  Google Scholar 

  9. Kaipel M, Krapf D, Wyss C (2011) Metatarsal length does not correlate with maximal peak pressure and maximal force. Clin Orthop 469:1161–1166. https://doi.org/10.1007/s11999-010-1615-y

    Article  PubMed  Google Scholar 

  10. Jung H-G, Zaret DI, Parks BG, Schon LC (2005) Effect of first metatarsal shortening and dorsiflexion osteotomies on forefoot plantar pressure in a Cadaver model. Foot Ankle Int 26:748–753. https://doi.org/10.1177/107110070502600913

    Article  PubMed  Google Scholar 

  11. Maestro M, Besse J-L, Ragusa M, Berthonnaud E (2003) Forefoot morphotype study and planning method for forefoot osteotomy. Foot Ankle Clin 8:695–710. https://doi.org/10.1016/S1083-7515(03)00148-7

    Article  PubMed  Google Scholar 

  12. O’Kane C, Kilmartin TE (2002) The surgical management of central metatarsalgia. Foot Ankle Int 23:415–419. https://doi.org/10.1177/107110070202300508

    Article  PubMed  Google Scholar 

  13. Nade S, Newbold PJ (1983) Factors determining the level and changes in intra-articular pressure in the knee joint of the dog. J Physiol 338:21–36. https://doi.org/10.1113/jphysiol.1983.sp014657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Casanova Canals X, Ferreres Claramunt A, Del Valle JM et al (2019) Study of intraarticular pressures in the elbow joints. J Biomech 97:109378. https://doi.org/10.1016/j.jbiomech.2019.109378

    Article  PubMed  Google Scholar 

  15. Alexander C, Caughey D, Withy S et al (1996) Relation between flexion angle and intraarticular pressure during active and passive movement of the normal knee. J Rheumatol 23:889–895

    CAS  PubMed  Google Scholar 

  16. Jayson MI, Dixon AS (1969) Quadriceps contraction and intra-articular pressure. Clin Sci 37:874

    CAS  PubMed  Google Scholar 

  17. Pedowitz RA, Gershuni DH, Crenshaw AG et al (1989) Intraarticular pressure during continuous passive motion of the human knee. J Orthop Res 7:530–537. https://doi.org/10.1002/jor.1100070410

    Article  CAS  PubMed  Google Scholar 

  18. Cavanagh PR, Morag E, Boulton AJM et al (1997) The relationship of static foot structure to dynamic foot function. J Biomech 30:243–250. https://doi.org/10.1016/S0021-9290(96)00136-4

    Article  CAS  PubMed  Google Scholar 

  19. Maestro M, Augoyard M, Barouk L et al (1995) Biomécanique et repères radiologiques du sésamoïde latéral de l’hallux par rapport à la palette métatarsienne. Med Chir Pied 11:145–154

    Google Scholar 

  20. García-Aznar JM, Bayod J, Rosas A et al (2009) Load transfer mechanism for different metatarsal geometries: a finite element study. J Biomech Eng 131:021011. https://doi.org/10.1115/1.3005174

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Stiglitz.

Ethics declarations

Ethics approval

Clinical Research Ethics Committee Vivalto Santé, International Review Board approval N° CERC-VS-2020–11-2.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Patients signed informed consent regarding publishing their data.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tournemine, S., Calé, F., Cazeau, C. et al. Shortening effect influence of Distal Minimally Invasive Metatarsal Osteotomy in primary metatarsalgia. International Orthopaedics (SICOT) 46, 983–988 (2022). https://doi.org/10.1007/s00264-021-05146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-021-05146-7

Keywords

Navigation