Skip to main content

Advertisement

Log in

Molecular mechanisms of mechanical load-induced osteoarthritis

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

A Correction to this article was published on 24 April 2021

This article has been updated

Abstract

Introduction

Mechanical loading enhances the progression of osteoarthritis. However, its molecular mechanisms have not been established.

Objective

The aim of this review was to summarize the probable mechanisms of mechanical load-induced osteoarthritis.

Methods

A comprehensive search strategy was used to search PubMed and EMBASE databases (from the 15th of January 2015 to the 20th of October 2020). Search terms included “osteoarthritis”, “mechanical load”, and “mechanism”.

Results

Abnormal mechanical loading activates the interleukin-1β, tumour necrosis factor-α, nuclear factor kappa-B, Wnt, transforming growth factor-β, microRNAs pathways, and the oxidative stress pathway. These pathways induce the pathological progression of osteoarthritis. Mechanical stress signal receptors such as integrin, ion channel receptors, hydrogen peroxide-inducible clone-5, Gremlin-1, and transient receptor potential channel 4 are present in the articular cartilages.

Conclusion

This review highlights the molecular mechanisms of mechanical loading in inducing chondrocyte apoptosis and extracellular matrix degradation. These mechanisms provide potential targets for osteoarthritis prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable. The materials in this review comes from PubMed and EMBASE and does not involve experimental materials and data.

Change history

References

  1. Barnett R (2018) Osteoarthritis. Lancet 391:1985

    Article  PubMed  Google Scholar 

  2. Zhu J, Zhu Y, Xiao W, Hu Y, Li Y (2020) Instability and excessive mechanical loading mediate subchondral bone changes to induce osteoarthritis. Ann Transl Med 8:350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jenei-Lanzl Z, Meurer A, Zaucke F (2019) Interleukin-1β signaling in osteoarthritis - chondrocytes in focus. Cell Signal 53:212–223

    Article  CAS  PubMed  Google Scholar 

  4. Dolzani P, Assirelli E, Pulsatelli L, Meliconi R, Mariani E, Neri S (2019) Ex vivo physiological compression of human osteoarthritis cartilage modulates cellular and matrix components. PLoS One 14:e0222947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Szychlinska MA, Castrogiovanni P, Trovato FM, Nsir H, Zarrouk M, Lo Furno D, Di Rosa M, Imbesi R, Musumeci G (2019) Physical activity and Mediterranean diet based on olive tree phenolic compounds from two different geographical areas have protective effects on early osteoarthritis, muscle atrophy and hepatic steatosis. Eur J Nutr 58:565–581

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Chen Y, Chen Y, Zhou B, Shan X, Yang G (2018) Eriodictyol inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes. Biomed Pharmacother 107:1128–1134

    Article  CAS  PubMed  Google Scholar 

  7. Wu D, Zhu X, Kang X, Huang H, Yu J, Pan J, Zhang X (2019) The protective effect of sophocarpine in osteoarthritis: an in vitro and in vivo study. Int Immunopharmacol 67:145–151

    Article  CAS  PubMed  Google Scholar 

  8. Feng Z, Li X, Lin J, Zheng W, Hu Z, Xuan J, Ni W, Pan X (2017) Oleuropein inhibits the IL-1β-induced expression of inflammatory mediators by suppressing the activation of NF-κB and MAPKs in human osteoarthritis chondrocytes. Food Funct 8:3737–3744

    Article  CAS  PubMed  Google Scholar 

  9. Huang X, Xi Y, Pan Q, Mao Z, Zhang R, Ma X, You H (2018) Caffeic acid protects against IL-1β-induced inflammatory responses and cartilage degradation in articular chondrocytes. Biomed Pharmacother 107:433–439

    Article  CAS  PubMed  Google Scholar 

  10. Wu J, Huang JF, Qin XX, Hu F, Chen ZF, Zheng Y, Liu YX, Cai XH (2018) Platelet-rich plasma inhibits Wnt/β-catenin signaling in rabbit cartilage cells activated by IL-1β. Int Immunopharmacol 55:282–289

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Zhou S, Cai W, Han G, Li J, Chen M, Li H (2020) Hypoxia/reoxygenation activates the JNK pathway and accelerates synovial senescence. Mol Med Rep 22:265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu C, Li Y, Hu S, Cai Y, Yang Z, Peng K (2018) Scoparone prevents IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through the PI3K/Akt/NF-κB pathway. Biomed Pharmacother 106:1169–1174

    Article  CAS  PubMed  Google Scholar 

  13. Wu D, Jin S, Lin Z, Chen R, Pan T, Kang X, Huang H, Lin C, Pan J (2018) Sauchinone inhibits IL-1β induced catabolism and hypertrophy in mouse chondrocytes to attenuate osteoarthritis via Nrf2/HO-1 and NF-κB pathways. Int Immunopharmacol 62:181–190

    Article  CAS  PubMed  Google Scholar 

  14. Na HS, Park JS, Cho KH, Kwon JY, Choi J, Jhun J, Kim SJ, Park SH, Cho ML (2020) Interleukin-1-interleukin-17 signaling axis induces cartilage destruction and promotes experimental osteoarthritis. Front Immunol 11:730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ohtsuki T, Hatipoglu OF, Asano K, Inagaki J, Nishida K, Hirohata S (2020) Induction of CEMIP in chondrocytes by inflammatory cytokines: underlying mechanisms and potential involvement in osteoarthritis. Int J Mol Sci 21

  16. Liu C, Ren S, Zhao S, Wang Y (2019) LncRNA MALAT1/MiR-145 adjusts IL-1β-induced chondrocytes viability and cartilage matrix degradation by regulating ADAMTS5 in human osteoarthritis. Yonsei Med J 60:1081–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang F, Liu J, Chen X, Zheng X, Qu N, Zhang B, Xia C (2019) IL-1β receptor antagonist (IL-1Ra) combined with autophagy inducer (TAT-Beclin1) is an effective alternative for attenuating extracellular matrix degradation in rat and human osteoarthritis chondrocytes. Arthritis Res Ther 21:171

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pecchi E, Priam S, Gosset M, Pigenet A, Sudre L, Laiguillon MC, Berenbaum F, Houard X (2014) Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain. Arthritis Res Ther 16:R16

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang C, Lin S, Li T, Jiang Y, Huang Z, Wen J, Cheng W, Li H (2017) Mechanical force-mediated pathological cartilage thinning is regulated by necroptosis and apoptosis. Osteoarthr Cartil 25:1324–1334

    Article  CAS  Google Scholar 

  20. Wang C, Al-Ani MK, Sha Y, Chi Q, Dong N, Yang L, Xu K (2019) Psoralen protects chondrocytes, exhibits anti-inflammatory effects on synoviocytes, and attenuates monosodium iodoacetate-induced osteoarthritis. Int J Biol Sci 15:229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li YN, Fan ML, Liu HQ, Ma B, Dai WL, Yu BY, Liu JH (2019) Dihydroartemisinin derivative DC32 inhibits inflammatory response in osteoarthritic synovium through regulating Nrf2/NF-κB pathway. Int Immunopharmacol 74:105701

    Article  CAS  PubMed  Google Scholar 

  22. Yan L, Zhou L, Xie D, Du W, Chen F, Yuan Q, Tong P, Shan L, Efferth T (2019) Chondroprotective effects of platelet lysate towards monoiodoacetate-induced arthritis by suppression of TNF-α-induced activation of NF-ĸB pathway in chondrocytes. Aging 11:2797–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McAllister MJ, Chemaly M, Eakin AJ, Gibson DS, McGilligan VE (2018) NLRP3 as a potentially novel biomarker for the management of osteoarthritis. Osteoarthr Cartil 26:612–619

    Article  CAS  Google Scholar 

  24. Grodzinsky AJ, Wang Y, Kakar S, Vrahas MS, Evans CH (2017) Intra-articular dexamethasone to inhibit the development of post-traumatic osteoarthritis. J Orthop Res: Off Publ Orthop Res Soc 35:406–411

    Article  CAS  Google Scholar 

  25. Choi MC, Jo J, Park J, Kang HK, Park Y (2019) NF-κB signaling pathways in osteoarthritic cartilage destruction. Cells 8

  26. Liang Y, Chen S, Yang Y, Lan C, Zhang G, Ji Z, Lin H (2018) Vasoactive intestinal peptide alleviates osteoarthritis effectively via inhibiting NF-κB signaling pathway. J Biomed Sci 25:25

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang Y, Wang Y, Kong Y, Zhang X, Zhang H, Gang Y, Bai L (2019) Mechanical stress protects against osteoarthritis via regulation of the AMPK/NF-κB signaling pathway. J Cell Physiol 234:9156–9167

    Article  CAS  PubMed  Google Scholar 

  28. Yan H, Duan X, Collins KH, Springer LE, Guilak F, Wickline SA, Rai MF, Pan H, Pham CTN (2019) Nanotherapy targeting NF-κB attenuates acute pain after joint injury. Precis Nanomed 2:245–248

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chang SH, Mori D, Kobayashi H, Mori Y, Nakamoto H, Okada K, Taniguchi Y, Sugita S, Yano F, Chung UI et al (2019) Excessive mechanical loading promotes osteoarthritis through the gremlin-1-NF-κB pathway. Nat Commun 10:1442

    Article  PubMed  PubMed Central  Google Scholar 

  30. Suzuki M, Takahashi N, Sobue Y, Ohashi Y, Kishimoto K, Hattori K, Ishiguro N, Kojima T (2020) Hyaluronan suppresses enhanced cathepsin K expression via activation of NF-κB with mechanical stress loading in a human chondrocytic HCS-2/8 cells. Sci Rep 10:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ostojic M, Soljic V, Vukojevic K, Dapic T (2017) Immunohistochemical characterization of early and advanced knee osteoarthritis by NF-κB and iNOS expression. J Orthop Res: Off Publ Orthop Res Soc 35:1990–1997

    Article  CAS  Google Scholar 

  32. Wondimu EB, Culley KL, Quinn J, Chang J, Dragomir CL, Plumb DA, Goldring MB, Otero M (2018) Elf3 contributes to cartilage degradation in vivo in a surgical model of post-traumatic osteoarthritis. Sci Rep 8:6438

    Article  PubMed  PubMed Central  Google Scholar 

  33. Murahashi Y, Yano F, Kobayashi H, Makii Y, Iba K, Yamashita T, Tanaka S, Saito T (2018) Intra-articular administration of IκBα kinase inhibitor suppresses mouse knee osteoarthritis via downregulation of the NF-κB/HIF-2α axis. Sci Rep 8:16475

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nishimura R, Hata K, Takahata Y, Murakami T, Nakamura E, Ohkawa M, Ruengsinpinya L (2020) Role of signal transduction pathways and transcription factors in cartilage and joint diseases. Int J Mol Sci 21

  35. Otero M, Peng H, Hachem KE, Culley KL, Wondimu EB, Quinn J, Asahara H, Tsuchimochi K, Hashimoto K, Goldring MB (2017) ELF3 modulates type II collagen gene (COL2A1) transcription in chondrocytes by inhibiting SOX9-CBP/p300-driven histone acetyltransferase activity. Connect Tissue Res 58:15–26

    Article  CAS  PubMed  Google Scholar 

  36. Nalesso G, Thomas BL, Sherwood JC, Yu J, Addimanda O, Eldridge SE, Thorup AS, Dale L, Schett G, Zwerina J et al (2017) WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann Rheum Dis 76:218–226

    Article  CAS  PubMed  Google Scholar 

  37. Xuan F, Yano F, Mori D, Chijimatsu R, Maenohara Y, Nakamoto H, Mori Y, Makii Y, Oichi T, Taketo MM et al (2019) Wnt/β-catenin signaling contributes to articular cartilage homeostasis through lubricin induction in the superficial zone. Arthritis Res Ther 21:247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang YY, Wen J, Gong C, Lin S, Zhang CX, Chen S, Cheng W, Li H (2018) BIO alleviated compressive mechanical force-mediated mandibular cartilage pathological changes through Wnt/β-catenin signaling activation. J Orthop Res: Off Publ Orthop Res Soc 36:1228–1237

    CAS  Google Scholar 

  39. Lietman C, Wu B, Lechner S, Shinar A, Sehgal M, Rossomacha E, Datta P, Sharma A, Gandhi R, Kapoor M et al (2018) Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. JCI Insight 3

  40. Pérez-García S, Carrión M, Villanueva-Romero R, Hermida-Gómez T, Fernández-Moreno M, Mellado M, Blanco FJ, Juarranz Y, Gomariz RP (2019) Wnt and RUNX2 mediate cartilage breakdown by osteoarthritis synovial fibroblast-derived ADAMTS-7 and -12. J Cell Mol Med 23:3974–3983

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cheleschi S, De Palma A, Pecorelli A, Pascarelli NA, Valacchi G, Belmonte G, Carta S, Galeazzi M, Fioravanti A (2017) Hydrostatic pressure regulates microRNA expression levels in osteoarthritic chondrocyte cultures via the Wnt/β-catenin pathway. Int J Mol Sci 18

  42. Huang G, Chubinskaya S, Liao W, Loeser RF (2017) Wnt5a induces catabolic signaling and matrix metalloproteinase production in human articular chondrocytes. Osteoarthr Cartil 25:1505–1515

    Article  CAS  Google Scholar 

  43. Hu S, Mao G, Zhang Z, Wu P, Wen X, Liao W, Zhang Z (2019) MicroRNA-320c inhibits development of osteoarthritis through downregulation of canonical Wnt signaling pathway. Life Sci 228:242–250

    Article  CAS  PubMed  Google Scholar 

  44. Deshmukh V, Hu H, Barroga C, Bossard C, Kc S, Dellamary L, Stewart J, Chiu K, Ibanez M, Pedraza M et al (2018) A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthr Cartil 26:18–27

    Article  CAS  Google Scholar 

  45. Praxenthaler H, Krämer E, Weisser M, Hecht N, Fischer J, Grossner T, Richter W (2018) Extracellular matrix content and WNT/β-catenin levels of cartilage determine the chondrocyte response to compressive load. Biochim Biophys Acta Mol basis Dis 1864:851–859

    Article  CAS  PubMed  Google Scholar 

  46. Huang X, Chen Z, Shi W, Zhang R, Li L, Liu H, Wu L (2019) TMF inhibits miR-29a/Wnt/β-catenin signaling through upregulating Foxo3a activity in osteoarthritis chondrocytes. Drug Des Dev Ther 13:2009–2019

    Article  CAS  Google Scholar 

  47. Luo Z, Jiang L, Xu Y, Li H, Xu W, Wu S, Wang Y, Tang Z, Lv Y, Yang L (2015) Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials 52:463–475

    Article  CAS  PubMed  Google Scholar 

  48. Madej W, Buma P, van der Kraan P (2016) Inflammatory conditions partly impair the mechanically mediated activation of Smad2/3 signaling in articular cartilage. Arthritis Res Ther 18:146

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lu W, He Z, Shi J, Wang Z, Wu W, Liu J, Kang H, Li F, Liang S (2019) AMD3100 attenuates post-traumatic osteoarthritis by maintaining transforming growth factor-β1-induced expression of tissue inhibitor of metalloproteinase-3 via the phosphatidylinositol 3-kinase/Akt pathway. Front Pharmacol 10:1554

    Article  CAS  PubMed  Google Scholar 

  50. Chavez RD, Coricor G, Perez J, Seo HS, Serra R (2017) SOX9 protein is stabilized by TGF-β and regulates PAPSS2 mRNA expression in chondrocytes. Osteoarthr Cartil 25:332–340

    Article  CAS  Google Scholar 

  51. Boyan BD, Hyzy SL, Pan Q, Scott KM, Coutts RD, Healey R, Schwartz Z (2016) 24R,25-Dihydroxyvitamin D3 protects against articular cartilage damage following anterior cruciate ligament transection in male rats. PLoS One 11:e0161782

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chavez RD, Sohn P, Serra R (2019) Prg4 prevents osteoarthritis induced by dominant-negative interference of TGF-ß signaling in mice. PLoS One 14:e0210601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuo SJ, Liu SC, Huang YL, Tsai CH, Fong YC, Hsu HC, Tang CH (2019) TGF-β1 enhances FOXO3 expression in human synovial fibroblasts by inhibiting miR-92a through AMPK and p38 pathways. Aging 11:4075–4089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kwak YH, Kwak DK, Kim NY, Kim YJ, Lim JS, Yoo JH (2020) Significant changes in synovial fluid microRNAs after high tibial osteotomy in medial compartmental knee osteoarthritis: identification of potential prognostic biomarkers. PLoS One 15:e0227596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang X, Guan Y, Tian S, Wang Y, Sun K, Chen Q (2016) Mechanical and IL-1β responsive miR-365 contributes to osteoarthritis development by targeting histone deacetylase 4. Int J Mol Sci 17:436

    Article  PubMed  PubMed Central  Google Scholar 

  56. De Palma A, Cheleschi S, Pascarelli NA, Giannotti S, Galeazzi M, Fioravanti A (2018) Hydrostatic pressure as epigenetic modulator in chondrocyte cultures: a study on miRNA-155, miRNA-181a and miRNA-223 expression levels. J Biomech 66:165–169

    Article  PubMed  Google Scholar 

  57. Wang J, Zhang Y, Song W, Ma T, Wang K (2018) microRNA-590-5p targets transforming growth factor β1 to promote chondrocyte apoptosis and autophagy in response to mechanical pressure injury. J Cell Biochem 119:9931–9940

    Article  CAS  PubMed  Google Scholar 

  58. Kang D, Shin J, Cho Y, Kim HS, Gu YR, Kim H, You KT, Chang MJ, Chang CB, Kang SB et al (2019) Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development. Sci Transl Med 11

  59. Shen P, Yang Y, Liu G, Chen W, Chen J, Wang Q, Gao H, Fan S, Shen S, Zhao X (2020) CircCDK14 protects against osteoarthritis by sponging miR-125a-5p and promoting the expression of Smad2. Theranostics 10:9113–9131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guan YJ, Li J, Yang X, Du S, Ding J, Gao Y, Zhang Y, Yang K, Chen Q (2018) Evidence that miR-146a attenuates aging- and trauma-induced osteoarthritis by inhibiting Notch1, IL-6, and IL-1 mediated catabolism. Aging Cell 17:e12752

    Article  PubMed  PubMed Central  Google Scholar 

  61. Huang J, Zhao L, Fan Y, Liao L, Ma PX, Xiao G, Chen D (2019) The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression. Nat Commun 10:2876

    Article  PubMed  PubMed Central  Google Scholar 

  62. Coleman MC, Ramakrishnan PS, Brouillette MJ, Martin JA (2016) Injurious loading of articular cartilage compromises chondrocyte respiratory function. Arthritis Rheumatol 68:662–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arra M, Swarnkar G, Ke K, Otero JE, Ying J, Duan X, Maruyama T, Rai MF, O'Keefe RJ, Mbalaviele G et al (2020) LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat Commun 11:3427

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cao B, Li Z, Peng R, Ding J (2015) Effects of cell-cell contact and oxygen tension on chondrogenic differentiation of stem cells. Biomaterials 64:21–32

    Article  CAS  PubMed  Google Scholar 

  65. Kaneko Y, Tanigawa N, Sato Y, Kobayashi T, Nakamura S, Ito E, Soma T, Miyamoto K, Kobayashi S, Harato K et al (2019) Oral administration of N-acetyl cysteine prevents osteoarthritis development and progression in a rat model. Sci Rep 9:18741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Almonte-Becerril M, Gimeno LI, Villarroya O, Benito-Jardón M, Kouri JB, Costell M (2018) Genetic abrogation of the fibronectin-α5β1 integrin interaction in articular cartilage aggravates osteoarthritis in mice. PLoS One 13:e0198559

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hirose N, Okamoto Y, Yanoshita M, Asakawa Y, Sumi C, Takano M, Nishiyama S, Su SC, Mitsuyoshi T, Kunimatsu R et al (2020) Protective effects of cilengitide on inflammation in chondrocytes under excessive mechanical stress. Cell Biol Int 44:966–974

    Article  CAS  PubMed  Google Scholar 

  68. Lee W, Leddy HA, Chen Y, Lee SH, Zelenski NA, McNulty AL, Wu J, Beicker KN, Coles J, Zauscher S et al (2014) Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci U S A 111:E5114–E5122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu B, Xing R, Huang Z, Yin S, Li X, Zhang L, Ding L, Wang P (2019) Excessive mechanical stress induces chondrocyte apoptosis through TRPV4 in an anterior cruciate ligament-transected rat osteoarthritis model. Life Sci 228:158–166

    Article  CAS  PubMed  Google Scholar 

  70. Sun L, Wang G, He M, Mei Z, Zhang F, Liu P (2020) Effect and mechanism of the CACNA2D1-CGRP pathway in osteoarthritis-induced ongoing pain. Biomed Pharmacother 129:110374

    Article  CAS  PubMed  Google Scholar 

  71. Zelenski NA, Leddy HA, Sanchez-Adams J, Zhang J, Bonaldo P, Liedtke W, Guilak F (2015) Type VI collagen regulates pericellular matrix properties, chondrocyte swelling, and mechanotransduction in mouse articular cartilage. Arthritis Rheumatol 67:1286–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zeng D, Yao P, Zhao H (2019) P2X7, a critical regulator and potential target for bone and joint diseases. J Cell Physiol 234:2095–2103

    Article  CAS  PubMed  Google Scholar 

  73. Thompson CL, Plant JC, Wann AK, Bishop CL, Novak P, Mitchison HM, Beales PL, Chapple JP, Knight MM (2017) Chondrocyte expansion is associated with loss of primary cilia and disrupted hedgehog signalling. Eur Cells Mater 34:128–141

    Article  CAS  Google Scholar 

  74. Yuan X, Yang S (2016) Primary cilia and intraflagellar transport proteins in bone and cartilage. J Dent Res 95:1341–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miyauchi A, Kim-Kaneyama JR, Lei XF, Chang SH, Saito T, Haraguchi S, Miyazaki T, Miyazaki A (2019) Alleviation of murine osteoarthritis by deletion of the focal adhesion mechanosensitive adapter, Hic-5. Sci Rep 9:15770

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hayashi D, Roemer FW, Guermazi A (2016) Imaging for osteoarthritis. Ann Phys Rehab Med 59:161–169

    Article  CAS  Google Scholar 

  77. Krupkova O, Zvick J, Wuertz-Kozak K (2017) The role of transient receptor potential channels in joint diseases. Eur Cells Mater 34:180–201

    Article  CAS  Google Scholar 

  78. Xu L, Nwosu LN, Burston JJ, Millns PJ, Sagar DR, Mapp PI, Meesawatsom P, Li L, Bennett AJ, Walsh DA et al (2016) The anti-NGF antibody muMab 911 both prevents and reverses pain behaviour and subchondral osteoclast numbers in a rat model of osteoarthritis pain. Osteoarthr Cartil 24:1587–1595

    Article  CAS  Google Scholar 

  79. Carcolé M, Kummer S, Gonçalves L, Zamanillo D, Merlos M, Dickenson AH, Fernández-Pastor B, Cabañero D, Maldonado R (2019) Sigma-1 receptor modulates neuroinflammation associated with mechanical hypersensitivity and opioid tolerance in a mouse model of osteoarthritis pain. Br J Pharmacol 176:3939–3955

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chevalier X, Ravaud P, Maheu E, Baron G, Rialland A, Vergnaud P, Roux C, Maugars Y, Mulleman D, Lukas C et al (2015) Adalimumab in patients with hand osteoarthritis refractory to analgesics and NSAIDs: a randomised, multicentre, double-blind, placebo-controlled trial. Ann Rheum Dis 74:1697–1705

    Article  CAS  PubMed  Google Scholar 

  81. Maudens P, Seemayer CA, Pfefferlé F, Jordan O, Allémann E (2018) Nanocrystals of a potent p38 MAPK inhibitor embedded in microparticles: therapeutic effects in inflammatory and mechanistic murine models of osteoarthritis. J Control Release 276:102–112

    Article  CAS  PubMed  Google Scholar 

  82. Rai MF, Pan H, Yan H, Sandell LJ, Pham CTN, Wickline SA (2019) Applications of RNA interference in the treatment of arthritis. Transl Res 214:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Experimental animal’s platform of Science and Technology Department of Zhejiang Province (Grant No. 2015C37116) and Medical and Health Platform Program of Zhejiang Province (Grant No. 2014RCA028).

Author information

Authors and Affiliations

Authors

Contributions

No other contributors participate in this manuscript. All the authors have made appropriate contributions to this review. Tianshun Fang designed the study and wrote the manuscript. Xiongfeng Li revised manuscript and approved article submission. Xianhao Zhou, Jiangbo Nie, and Mingchao Jin searched and collected the literature.

Corresponding author

Correspondence to XIongfeng Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

Not applicable. This review does not conduct human or animal experiments.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: With the author(s)’ decision to step back from Open Choice, the copyright of the article was changed on April 2021 to © SICOT aisbl 2021 and the article is forthwith distributed under the terms of copyright.

Appendix

Appendix

Table 2 List of the terms used in the searches

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, T., Zhou, X., Jin, M. et al. Molecular mechanisms of mechanical load-induced osteoarthritis. International Orthopaedics (SICOT) 45, 1125–1136 (2021). https://doi.org/10.1007/s00264-021-04938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-021-04938-1

Keywords

Navigation