Abstract
Introduction
Mechanical loading enhances the progression of osteoarthritis. However, its molecular mechanisms have not been established.
Objective
The aim of this review was to summarize the probable mechanisms of mechanical load-induced osteoarthritis.
Methods
A comprehensive search strategy was used to search PubMed and EMBASE databases (from the 15th of January 2015 to the 20th of October 2020). Search terms included “osteoarthritis”, “mechanical load”, and “mechanism”.
Results
Abnormal mechanical loading activates the interleukin-1β, tumour necrosis factor-α, nuclear factor kappa-B, Wnt, transforming growth factor-β, microRNAs pathways, and the oxidative stress pathway. These pathways induce the pathological progression of osteoarthritis. Mechanical stress signal receptors such as integrin, ion channel receptors, hydrogen peroxide-inducible clone-5, Gremlin-1, and transient receptor potential channel 4 are present in the articular cartilages.
Conclusion
This review highlights the molecular mechanisms of mechanical loading in inducing chondrocyte apoptosis and extracellular matrix degradation. These mechanisms provide potential targets for osteoarthritis prevention and treatment.
Similar content being viewed by others
Data availability
Not applicable. The materials in this review comes from PubMed and EMBASE and does not involve experimental materials and data.
Change history
24 April 2021
A Correction to this paper has been published: https://doi.org/10.1007/s00264-021-05055-9
References
Barnett R (2018) Osteoarthritis. Lancet 391:1985
Zhu J, Zhu Y, Xiao W, Hu Y, Li Y (2020) Instability and excessive mechanical loading mediate subchondral bone changes to induce osteoarthritis. Ann Transl Med 8:350
Jenei-Lanzl Z, Meurer A, Zaucke F (2019) Interleukin-1β signaling in osteoarthritis - chondrocytes in focus. Cell Signal 53:212–223
Dolzani P, Assirelli E, Pulsatelli L, Meliconi R, Mariani E, Neri S (2019) Ex vivo physiological compression of human osteoarthritis cartilage modulates cellular and matrix components. PLoS One 14:e0222947
Szychlinska MA, Castrogiovanni P, Trovato FM, Nsir H, Zarrouk M, Lo Furno D, Di Rosa M, Imbesi R, Musumeci G (2019) Physical activity and Mediterranean diet based on olive tree phenolic compounds from two different geographical areas have protective effects on early osteoarthritis, muscle atrophy and hepatic steatosis. Eur J Nutr 58:565–581
Wang Y, Chen Y, Chen Y, Zhou B, Shan X, Yang G (2018) Eriodictyol inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes. Biomed Pharmacother 107:1128–1134
Wu D, Zhu X, Kang X, Huang H, Yu J, Pan J, Zhang X (2019) The protective effect of sophocarpine in osteoarthritis: an in vitro and in vivo study. Int Immunopharmacol 67:145–151
Feng Z, Li X, Lin J, Zheng W, Hu Z, Xuan J, Ni W, Pan X (2017) Oleuropein inhibits the IL-1β-induced expression of inflammatory mediators by suppressing the activation of NF-κB and MAPKs in human osteoarthritis chondrocytes. Food Funct 8:3737–3744
Huang X, Xi Y, Pan Q, Mao Z, Zhang R, Ma X, You H (2018) Caffeic acid protects against IL-1β-induced inflammatory responses and cartilage degradation in articular chondrocytes. Biomed Pharmacother 107:433–439
Wu J, Huang JF, Qin XX, Hu F, Chen ZF, Zheng Y, Liu YX, Cai XH (2018) Platelet-rich plasma inhibits Wnt/β-catenin signaling in rabbit cartilage cells activated by IL-1β. Int Immunopharmacol 55:282–289
Zhang Y, Zhou S, Cai W, Han G, Li J, Chen M, Li H (2020) Hypoxia/reoxygenation activates the JNK pathway and accelerates synovial senescence. Mol Med Rep 22:265–276
Lu C, Li Y, Hu S, Cai Y, Yang Z, Peng K (2018) Scoparone prevents IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through the PI3K/Akt/NF-κB pathway. Biomed Pharmacother 106:1169–1174
Wu D, Jin S, Lin Z, Chen R, Pan T, Kang X, Huang H, Lin C, Pan J (2018) Sauchinone inhibits IL-1β induced catabolism and hypertrophy in mouse chondrocytes to attenuate osteoarthritis via Nrf2/HO-1 and NF-κB pathways. Int Immunopharmacol 62:181–190
Na HS, Park JS, Cho KH, Kwon JY, Choi J, Jhun J, Kim SJ, Park SH, Cho ML (2020) Interleukin-1-interleukin-17 signaling axis induces cartilage destruction and promotes experimental osteoarthritis. Front Immunol 11:730
Ohtsuki T, Hatipoglu OF, Asano K, Inagaki J, Nishida K, Hirohata S (2020) Induction of CEMIP in chondrocytes by inflammatory cytokines: underlying mechanisms and potential involvement in osteoarthritis. Int J Mol Sci 21
Liu C, Ren S, Zhao S, Wang Y (2019) LncRNA MALAT1/MiR-145 adjusts IL-1β-induced chondrocytes viability and cartilage matrix degradation by regulating ADAMTS5 in human osteoarthritis. Yonsei Med J 60:1081–1092
Wang F, Liu J, Chen X, Zheng X, Qu N, Zhang B, Xia C (2019) IL-1β receptor antagonist (IL-1Ra) combined with autophagy inducer (TAT-Beclin1) is an effective alternative for attenuating extracellular matrix degradation in rat and human osteoarthritis chondrocytes. Arthritis Res Ther 21:171
Pecchi E, Priam S, Gosset M, Pigenet A, Sudre L, Laiguillon MC, Berenbaum F, Houard X (2014) Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain. Arthritis Res Ther 16:R16
Zhang C, Lin S, Li T, Jiang Y, Huang Z, Wen J, Cheng W, Li H (2017) Mechanical force-mediated pathological cartilage thinning is regulated by necroptosis and apoptosis. Osteoarthr Cartil 25:1324–1334
Wang C, Al-Ani MK, Sha Y, Chi Q, Dong N, Yang L, Xu K (2019) Psoralen protects chondrocytes, exhibits anti-inflammatory effects on synoviocytes, and attenuates monosodium iodoacetate-induced osteoarthritis. Int J Biol Sci 15:229–238
Li YN, Fan ML, Liu HQ, Ma B, Dai WL, Yu BY, Liu JH (2019) Dihydroartemisinin derivative DC32 inhibits inflammatory response in osteoarthritic synovium through regulating Nrf2/NF-κB pathway. Int Immunopharmacol 74:105701
Yan L, Zhou L, Xie D, Du W, Chen F, Yuan Q, Tong P, Shan L, Efferth T (2019) Chondroprotective effects of platelet lysate towards monoiodoacetate-induced arthritis by suppression of TNF-α-induced activation of NF-ĸB pathway in chondrocytes. Aging 11:2797–2811
McAllister MJ, Chemaly M, Eakin AJ, Gibson DS, McGilligan VE (2018) NLRP3 as a potentially novel biomarker for the management of osteoarthritis. Osteoarthr Cartil 26:612–619
Grodzinsky AJ, Wang Y, Kakar S, Vrahas MS, Evans CH (2017) Intra-articular dexamethasone to inhibit the development of post-traumatic osteoarthritis. J Orthop Res: Off Publ Orthop Res Soc 35:406–411
Choi MC, Jo J, Park J, Kang HK, Park Y (2019) NF-κB signaling pathways in osteoarthritic cartilage destruction. Cells 8
Liang Y, Chen S, Yang Y, Lan C, Zhang G, Ji Z, Lin H (2018) Vasoactive intestinal peptide alleviates osteoarthritis effectively via inhibiting NF-κB signaling pathway. J Biomed Sci 25:25
Yang Y, Wang Y, Kong Y, Zhang X, Zhang H, Gang Y, Bai L (2019) Mechanical stress protects against osteoarthritis via regulation of the AMPK/NF-κB signaling pathway. J Cell Physiol 234:9156–9167
Yan H, Duan X, Collins KH, Springer LE, Guilak F, Wickline SA, Rai MF, Pan H, Pham CTN (2019) Nanotherapy targeting NF-κB attenuates acute pain after joint injury. Precis Nanomed 2:245–248
Chang SH, Mori D, Kobayashi H, Mori Y, Nakamoto H, Okada K, Taniguchi Y, Sugita S, Yano F, Chung UI et al (2019) Excessive mechanical loading promotes osteoarthritis through the gremlin-1-NF-κB pathway. Nat Commun 10:1442
Suzuki M, Takahashi N, Sobue Y, Ohashi Y, Kishimoto K, Hattori K, Ishiguro N, Kojima T (2020) Hyaluronan suppresses enhanced cathepsin K expression via activation of NF-κB with mechanical stress loading in a human chondrocytic HCS-2/8 cells. Sci Rep 10:216
Ostojic M, Soljic V, Vukojevic K, Dapic T (2017) Immunohistochemical characterization of early and advanced knee osteoarthritis by NF-κB and iNOS expression. J Orthop Res: Off Publ Orthop Res Soc 35:1990–1997
Wondimu EB, Culley KL, Quinn J, Chang J, Dragomir CL, Plumb DA, Goldring MB, Otero M (2018) Elf3 contributes to cartilage degradation in vivo in a surgical model of post-traumatic osteoarthritis. Sci Rep 8:6438
Murahashi Y, Yano F, Kobayashi H, Makii Y, Iba K, Yamashita T, Tanaka S, Saito T (2018) Intra-articular administration of IκBα kinase inhibitor suppresses mouse knee osteoarthritis via downregulation of the NF-κB/HIF-2α axis. Sci Rep 8:16475
Nishimura R, Hata K, Takahata Y, Murakami T, Nakamura E, Ohkawa M, Ruengsinpinya L (2020) Role of signal transduction pathways and transcription factors in cartilage and joint diseases. Int J Mol Sci 21
Otero M, Peng H, Hachem KE, Culley KL, Wondimu EB, Quinn J, Asahara H, Tsuchimochi K, Hashimoto K, Goldring MB (2017) ELF3 modulates type II collagen gene (COL2A1) transcription in chondrocytes by inhibiting SOX9-CBP/p300-driven histone acetyltransferase activity. Connect Tissue Res 58:15–26
Nalesso G, Thomas BL, Sherwood JC, Yu J, Addimanda O, Eldridge SE, Thorup AS, Dale L, Schett G, Zwerina J et al (2017) WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann Rheum Dis 76:218–226
Xuan F, Yano F, Mori D, Chijimatsu R, Maenohara Y, Nakamoto H, Mori Y, Makii Y, Oichi T, Taketo MM et al (2019) Wnt/β-catenin signaling contributes to articular cartilage homeostasis through lubricin induction in the superficial zone. Arthritis Res Ther 21:247
Jiang YY, Wen J, Gong C, Lin S, Zhang CX, Chen S, Cheng W, Li H (2018) BIO alleviated compressive mechanical force-mediated mandibular cartilage pathological changes through Wnt/β-catenin signaling activation. J Orthop Res: Off Publ Orthop Res Soc 36:1228–1237
Lietman C, Wu B, Lechner S, Shinar A, Sehgal M, Rossomacha E, Datta P, Sharma A, Gandhi R, Kapoor M et al (2018) Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. JCI Insight 3
Pérez-García S, Carrión M, Villanueva-Romero R, Hermida-Gómez T, Fernández-Moreno M, Mellado M, Blanco FJ, Juarranz Y, Gomariz RP (2019) Wnt and RUNX2 mediate cartilage breakdown by osteoarthritis synovial fibroblast-derived ADAMTS-7 and -12. J Cell Mol Med 23:3974–3983
Cheleschi S, De Palma A, Pecorelli A, Pascarelli NA, Valacchi G, Belmonte G, Carta S, Galeazzi M, Fioravanti A (2017) Hydrostatic pressure regulates microRNA expression levels in osteoarthritic chondrocyte cultures via the Wnt/β-catenin pathway. Int J Mol Sci 18
Huang G, Chubinskaya S, Liao W, Loeser RF (2017) Wnt5a induces catabolic signaling and matrix metalloproteinase production in human articular chondrocytes. Osteoarthr Cartil 25:1505–1515
Hu S, Mao G, Zhang Z, Wu P, Wen X, Liao W, Zhang Z (2019) MicroRNA-320c inhibits development of osteoarthritis through downregulation of canonical Wnt signaling pathway. Life Sci 228:242–250
Deshmukh V, Hu H, Barroga C, Bossard C, Kc S, Dellamary L, Stewart J, Chiu K, Ibanez M, Pedraza M et al (2018) A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthr Cartil 26:18–27
Praxenthaler H, Krämer E, Weisser M, Hecht N, Fischer J, Grossner T, Richter W (2018) Extracellular matrix content and WNT/β-catenin levels of cartilage determine the chondrocyte response to compressive load. Biochim Biophys Acta Mol basis Dis 1864:851–859
Huang X, Chen Z, Shi W, Zhang R, Li L, Liu H, Wu L (2019) TMF inhibits miR-29a/Wnt/β-catenin signaling through upregulating Foxo3a activity in osteoarthritis chondrocytes. Drug Des Dev Ther 13:2009–2019
Luo Z, Jiang L, Xu Y, Li H, Xu W, Wu S, Wang Y, Tang Z, Lv Y, Yang L (2015) Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials 52:463–475
Madej W, Buma P, van der Kraan P (2016) Inflammatory conditions partly impair the mechanically mediated activation of Smad2/3 signaling in articular cartilage. Arthritis Res Ther 18:146
Lu W, He Z, Shi J, Wang Z, Wu W, Liu J, Kang H, Li F, Liang S (2019) AMD3100 attenuates post-traumatic osteoarthritis by maintaining transforming growth factor-β1-induced expression of tissue inhibitor of metalloproteinase-3 via the phosphatidylinositol 3-kinase/Akt pathway. Front Pharmacol 10:1554
Chavez RD, Coricor G, Perez J, Seo HS, Serra R (2017) SOX9 protein is stabilized by TGF-β and regulates PAPSS2 mRNA expression in chondrocytes. Osteoarthr Cartil 25:332–340
Boyan BD, Hyzy SL, Pan Q, Scott KM, Coutts RD, Healey R, Schwartz Z (2016) 24R,25-Dihydroxyvitamin D3 protects against articular cartilage damage following anterior cruciate ligament transection in male rats. PLoS One 11:e0161782
Chavez RD, Sohn P, Serra R (2019) Prg4 prevents osteoarthritis induced by dominant-negative interference of TGF-ß signaling in mice. PLoS One 14:e0210601
Kuo SJ, Liu SC, Huang YL, Tsai CH, Fong YC, Hsu HC, Tang CH (2019) TGF-β1 enhances FOXO3 expression in human synovial fibroblasts by inhibiting miR-92a through AMPK and p38 pathways. Aging 11:4075–4089
Kwak YH, Kwak DK, Kim NY, Kim YJ, Lim JS, Yoo JH (2020) Significant changes in synovial fluid microRNAs after high tibial osteotomy in medial compartmental knee osteoarthritis: identification of potential prognostic biomarkers. PLoS One 15:e0227596
Yang X, Guan Y, Tian S, Wang Y, Sun K, Chen Q (2016) Mechanical and IL-1β responsive miR-365 contributes to osteoarthritis development by targeting histone deacetylase 4. Int J Mol Sci 17:436
De Palma A, Cheleschi S, Pascarelli NA, Giannotti S, Galeazzi M, Fioravanti A (2018) Hydrostatic pressure as epigenetic modulator in chondrocyte cultures: a study on miRNA-155, miRNA-181a and miRNA-223 expression levels. J Biomech 66:165–169
Wang J, Zhang Y, Song W, Ma T, Wang K (2018) microRNA-590-5p targets transforming growth factor β1 to promote chondrocyte apoptosis and autophagy in response to mechanical pressure injury. J Cell Biochem 119:9931–9940
Kang D, Shin J, Cho Y, Kim HS, Gu YR, Kim H, You KT, Chang MJ, Chang CB, Kang SB et al (2019) Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development. Sci Transl Med 11
Shen P, Yang Y, Liu G, Chen W, Chen J, Wang Q, Gao H, Fan S, Shen S, Zhao X (2020) CircCDK14 protects against osteoarthritis by sponging miR-125a-5p and promoting the expression of Smad2. Theranostics 10:9113–9131
Guan YJ, Li J, Yang X, Du S, Ding J, Gao Y, Zhang Y, Yang K, Chen Q (2018) Evidence that miR-146a attenuates aging- and trauma-induced osteoarthritis by inhibiting Notch1, IL-6, and IL-1 mediated catabolism. Aging Cell 17:e12752
Huang J, Zhao L, Fan Y, Liao L, Ma PX, Xiao G, Chen D (2019) The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression. Nat Commun 10:2876
Coleman MC, Ramakrishnan PS, Brouillette MJ, Martin JA (2016) Injurious loading of articular cartilage compromises chondrocyte respiratory function. Arthritis Rheumatol 68:662–671
Arra M, Swarnkar G, Ke K, Otero JE, Ying J, Duan X, Maruyama T, Rai MF, O'Keefe RJ, Mbalaviele G et al (2020) LDHA-mediated ROS generation in chondrocytes is a potential therapeutic target for osteoarthritis. Nat Commun 11:3427
Cao B, Li Z, Peng R, Ding J (2015) Effects of cell-cell contact and oxygen tension on chondrogenic differentiation of stem cells. Biomaterials 64:21–32
Kaneko Y, Tanigawa N, Sato Y, Kobayashi T, Nakamura S, Ito E, Soma T, Miyamoto K, Kobayashi S, Harato K et al (2019) Oral administration of N-acetyl cysteine prevents osteoarthritis development and progression in a rat model. Sci Rep 9:18741
Almonte-Becerril M, Gimeno LI, Villarroya O, Benito-Jardón M, Kouri JB, Costell M (2018) Genetic abrogation of the fibronectin-α5β1 integrin interaction in articular cartilage aggravates osteoarthritis in mice. PLoS One 13:e0198559
Hirose N, Okamoto Y, Yanoshita M, Asakawa Y, Sumi C, Takano M, Nishiyama S, Su SC, Mitsuyoshi T, Kunimatsu R et al (2020) Protective effects of cilengitide on inflammation in chondrocytes under excessive mechanical stress. Cell Biol Int 44:966–974
Lee W, Leddy HA, Chen Y, Lee SH, Zelenski NA, McNulty AL, Wu J, Beicker KN, Coles J, Zauscher S et al (2014) Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci U S A 111:E5114–E5122
Xu B, Xing R, Huang Z, Yin S, Li X, Zhang L, Ding L, Wang P (2019) Excessive mechanical stress induces chondrocyte apoptosis through TRPV4 in an anterior cruciate ligament-transected rat osteoarthritis model. Life Sci 228:158–166
Sun L, Wang G, He M, Mei Z, Zhang F, Liu P (2020) Effect and mechanism of the CACNA2D1-CGRP pathway in osteoarthritis-induced ongoing pain. Biomed Pharmacother 129:110374
Zelenski NA, Leddy HA, Sanchez-Adams J, Zhang J, Bonaldo P, Liedtke W, Guilak F (2015) Type VI collagen regulates pericellular matrix properties, chondrocyte swelling, and mechanotransduction in mouse articular cartilage. Arthritis Rheumatol 67:1286–1294
Zeng D, Yao P, Zhao H (2019) P2X7, a critical regulator and potential target for bone and joint diseases. J Cell Physiol 234:2095–2103
Thompson CL, Plant JC, Wann AK, Bishop CL, Novak P, Mitchison HM, Beales PL, Chapple JP, Knight MM (2017) Chondrocyte expansion is associated with loss of primary cilia and disrupted hedgehog signalling. Eur Cells Mater 34:128–141
Yuan X, Yang S (2016) Primary cilia and intraflagellar transport proteins in bone and cartilage. J Dent Res 95:1341–1349
Miyauchi A, Kim-Kaneyama JR, Lei XF, Chang SH, Saito T, Haraguchi S, Miyazaki T, Miyazaki A (2019) Alleviation of murine osteoarthritis by deletion of the focal adhesion mechanosensitive adapter, Hic-5. Sci Rep 9:15770
Hayashi D, Roemer FW, Guermazi A (2016) Imaging for osteoarthritis. Ann Phys Rehab Med 59:161–169
Krupkova O, Zvick J, Wuertz-Kozak K (2017) The role of transient receptor potential channels in joint diseases. Eur Cells Mater 34:180–201
Xu L, Nwosu LN, Burston JJ, Millns PJ, Sagar DR, Mapp PI, Meesawatsom P, Li L, Bennett AJ, Walsh DA et al (2016) The anti-NGF antibody muMab 911 both prevents and reverses pain behaviour and subchondral osteoclast numbers in a rat model of osteoarthritis pain. Osteoarthr Cartil 24:1587–1595
Carcolé M, Kummer S, Gonçalves L, Zamanillo D, Merlos M, Dickenson AH, Fernández-Pastor B, Cabañero D, Maldonado R (2019) Sigma-1 receptor modulates neuroinflammation associated with mechanical hypersensitivity and opioid tolerance in a mouse model of osteoarthritis pain. Br J Pharmacol 176:3939–3955
Chevalier X, Ravaud P, Maheu E, Baron G, Rialland A, Vergnaud P, Roux C, Maugars Y, Mulleman D, Lukas C et al (2015) Adalimumab in patients with hand osteoarthritis refractory to analgesics and NSAIDs: a randomised, multicentre, double-blind, placebo-controlled trial. Ann Rheum Dis 74:1697–1705
Maudens P, Seemayer CA, Pfefferlé F, Jordan O, Allémann E (2018) Nanocrystals of a potent p38 MAPK inhibitor embedded in microparticles: therapeutic effects in inflammatory and mechanistic murine models of osteoarthritis. J Control Release 276:102–112
Rai MF, Pan H, Yan H, Sandell LJ, Pham CTN, Wickline SA (2019) Applications of RNA interference in the treatment of arthritis. Transl Res 214:1–16
Funding
This work was supported by Experimental animal’s platform of Science and Technology Department of Zhejiang Province (Grant No. 2015C37116) and Medical and Health Platform Program of Zhejiang Province (Grant No. 2014RCA028).
Author information
Authors and Affiliations
Contributions
No other contributors participate in this manuscript. All the authors have made appropriate contributions to this review. Tianshun Fang designed the study and wrote the manuscript. Xiongfeng Li revised manuscript and approved article submission. Xianhao Zhou, Jiangbo Nie, and Mingchao Jin searched and collected the literature.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there are no conflicts of interest.
Ethical approval
Not applicable. This review does not conduct human or animal experiments.
Consent to participate
Not applicable.
Consent to publish
Not applicable.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised: With the author(s)’ decision to step back from Open Choice, the copyright of the article was changed on April 2021 to © SICOT aisbl 2021 and the article is forthwith distributed under the terms of copyright.
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Fang, T., Zhou, X., Jin, M. et al. Molecular mechanisms of mechanical load-induced osteoarthritis. International Orthopaedics (SICOT) 45, 1125–1136 (2021). https://doi.org/10.1007/s00264-021-04938-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00264-021-04938-1