Skip to main content

Advertisement

Log in

Detection of vascularity of femoral head using sub-millimeter resolution steady-state magnetic resonance angiography—initial experience

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study was to use the steady-state (SS) magnetic resonance angiography (MRA) with a sub-millimeter resolution to detect the arteries supplying to the femoral head (FH).

Materials and method

SS MRA scanning of hips was performed bilaterally in 15 healthy volunteers. A blood pool contrast agent was used. The scanning protocol included a 0.8-mm3 isotropic T1-fast field echo sequence with spectral fat suppression technique. Two highly qualified radiologists independently evaluated the medial circumflex femoral artery (MCFA), the lateral circumflex femoral artery (LCFA), and the three retinacular arteries including superior retinacular artery (SRA), inferior retinacular artery (IRA), and anterior retinacular artery (ARA). The intraosseous branches of the three retinacular arteries were also evaluated. An orthopaedic surgeon was consulted in case of disagreement. Observation by the two radiologists and support from the orthopaedic surgeon served as the end result. Agreement between the two observer radiologists was evaluated.

Results

Interobserver agreement between the two radiologists was found to be substantial to perfect. Of the 30 hips, the LCFA and MCFA were detected in all hips; the SRA and IRA were detected in most hips (100%, 90%), and the ARA was detected in 13 hips (43%). The intraosseous branches of SRA and IRA were detected in 30 and 22 hips (100%, 73%), respectively, while the intraosseous branches of ARA were detected in 11 hips (37%).

Conclusion

The main arteries supplying the FH can be detected by the SS MRA, making it a novel method to detect the vascularity of FH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Seeley MA, Georgiadis AG, Sankar WN (2016) Hip vascularity: a review of the anatomy and clinical implications. J Am AcadOrthop Surg 24(8):515–526. https://doi.org/10.5435/JAAOS-D-15-00237

    Article  Google Scholar 

  2. Boraiah S, Dyke JP, Hettrich C et al (2009) Assessment of vascularity of the femoral head using gadolinium (Gd-DTPA)-enhanced magnetic resonance imaging: a cadaver study. J Bone Joint Surg Br 91(1):131–137. https://doi.org/10.1302/0301-620X.91B1.21275

    Article  PubMed  CAS  Google Scholar 

  3. Dewar DC, Lazaro LE, Klinger CE et al (2016) The relative contribution of the medial and lateral femoral circumflex arteries to the vascularity of the head and neck of the femur: a quantitative MRI-based assessment. Bone Joint J 98-B(12):1582–1588. https://doi.org/10.1302/0301-620X.98B12.BJJ-2016-0251.R1

    Article  PubMed  CAS  Google Scholar 

  4. Lazaro LE, Klinger CE, Sculco PK et al (2015) The terminal branches of the medial femoral circumflex artery: the arterial supply of the femoral head. Bone Joint J 97-B(9):1204–1213. https://doi.org/10.1302/0301-620X.97B9.34704

    Article  PubMed  CAS  Google Scholar 

  5. Ganz R, Gill TJ, Gautier E, Ganz K, Krügel N, Berlemann U (2001) Surgical dislocation of the adult hip a technique with full access to the femoral head and acetabulum without the risk of avascular necrosis. J Bone Joint Surg Br 83(8):1119–1124. https://doi.org/10.1302/0301-620X.83B8.0831119

    Article  PubMed  CAS  Google Scholar 

  6. Gautier E, Ganz K, Krügel N, Gill T, Ganz R (2000) Anatomy of the medial femoral circumflex artery and its surgical implications. J Bone Joint Surg Br 82(5):679–683. https://doi.org/10.1302/0301-620X.82B5.0820679

    Article  PubMed  CAS  Google Scholar 

  7. Dora C, Leunig M, Beck M, Rothenfluh D, Ganz R (2001) Entry point soft tissue damage in antegrade femoral nailing: a cadaver study. J Orthop Trauma 15(7):488–493. https://doi.org/10.1097/00005131-200109000-00005

    Article  PubMed  CAS  Google Scholar 

  8. Ansari Moein CM, Verhofstad MH, Bleys RL et al (2005) Soft tissue injury related to choice of entry point in antegrade femoral nailing: piriform fossa or greater trochanter tip. Injury 36(11):1337–1342. https://doi.org/10.1016/j.injury.2004.07.052

    Article  PubMed  CAS  Google Scholar 

  9. Kalhor M, Horowitz K, Gharehdaghi J, Beck M, Ganz R (2012) Anatomic variations in femoral head circulation. Hip Int 22(3):307–312. https://doi.org/10.5301/HIP.2012.9242

    Article  PubMed  Google Scholar 

  10. Chi Z, Wang S, Zhao D et al (2019) Evaluating the blood supply of the femoral head during different stages of necrosis using digital subtraction angiography. Orthopedics 42(2):e210–e215. https://doi.org/10.3928/01477447-20190118-01

    Article  PubMed  Google Scholar 

  11. Liu Y, Li M, Zhang M et al (2013) Femoral neck fractures: prognosis based on a new classification after superselective angiography. J Orthop Sci 18(3):443–450. https://doi.org/10.1007/s00776-013-0367-4

    Article  PubMed  Google Scholar 

  12. Xiao J, Yang XJ, Xiao XS (2012) DSA observation of hemodynamic response of femoral head with femoral neck fracture during traction: a pilot study. J Orthop Trauma 26(7):407–413. https://doi.org/10.1097/BOT.0b013e318216dd60

    Article  PubMed  Google Scholar 

  13. Yasunaga Y, Ikuta Y, Omoto O et al (2000) Transtrochanteric rotational osteotomy for osteonecrosis of the femoral head with preoperative superselective angiography. Arch Orth Traum Surg 120(7–8):437–440. https://doi.org/10.1007/s004029900130

    Article  CAS  Google Scholar 

  14. Zlotorowicz M, Czubak J, Kozinski P et al (2012) Imaging the vascularisation of the femoral head by CT angiography. J Bone Joint Surg Br 94(9):1176–1179. https://doi.org/10.1302/0301-620X.94B9.29494

    Article  PubMed  CAS  Google Scholar 

  15. Zlotorowicz M, Czubak J, Caban A et al (2013) The blood supply to the femoral head after posterior fracture/dislocation of the hip assessed by CT angiography. Bone Joint J 95-B(11):1453–1457. https://doi.org/10.1302/0301-620X.95B11.32383

    Article  PubMed  CAS  Google Scholar 

  16. Nikolaou K, Kramer H, Grosse C et al (2006) High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology 241(3):861–872. https://doi.org/10.1148/radiol.2413060053

    Article  PubMed  Google Scholar 

  17. Wang MS, Haynor DR, Wilson GJ et al (2007) Maximizing contrast-to-noise ratio in ultra-high resolution peripheral MR angiography using a blood pool agent and parallel imaging. J Magn Reson Imaging 26(3):580–588. https://doi.org/10.1002/jmri.20998

    Article  PubMed  CAS  Google Scholar 

  18. Boschewitz JM, Hadizadeh DR, Kukuk GM et al (2014) 0.125 mm(3) spatial resolution steady-state MR angiography of the thighs with a blood pool contrast agent using the quadrature body coil only at 1.5 Tesla. J Magn Reson Imaging 40(4):996–1001. https://doi.org/10.1002/jmri.24455

    Article  PubMed  Google Scholar 

  19. Leiner T, Habets J, Versluis B et al (2013) Subtractionless first-pass single contrast medium dose peripheral MR angiography using two-point Dixon fat suppression. Eur Radiol 23(8):2228–2235. https://doi.org/10.1007/s00330-013-2833-y

    Article  PubMed  Google Scholar 

  20. Michaely HJ, Attenberger UI, Dietrich O et al (2008) Feasibility of gadofosveset-enhanced steady-state magnetic resonance angiography of the peripheral vessels at 3 Tesla with Dixon fat saturation. Investig Radiol 43(9):635–641. https://doi.org/10.1097/RLI.0b013e31817ee53a

    Article  Google Scholar 

  21. Homsi R, Gieseke J, Kukuk GM et al (2015) Dixon-based fat-free MR-angiography compared to first pass and steady-state high-resolution MR-angiography using a blood pool contrast agent. Magn Reson Imaging 33(9):1035–1042. https://doi.org/10.1016/j.mri.2015.07.005

    Article  PubMed  Google Scholar 

  22. Belmahi N, Boujraf S, Larwanou MM et al (2018) Avascular necrosis of the femoral head: an exceptional complication of Cushing’s disease. Ann Afr Med 17(4):225–227. https://doi.org/10.4103/aam.aam_75_17

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Sun R, Zhang L et al (2017) Effect of blood biochemical factors on nontraumatic necrosis of the femoral head: logistic regression analysis. Orthopade 46(9):737–743. https://doi.org/10.1007/s00132-017-3408-4

    Article  PubMed  Google Scholar 

  24. Lai SW, Lin CL, Liao KF (2019) Real-world database examining the association between avascular necrosis of the femoral head and diabetes in Taiwan. Diabetes Care 42(1):39–43. https://doi.org/10.2337/dc18-1258

    Article  PubMed  Google Scholar 

  25. Wu D, Song D, Ni J et al (2013) Avascular necrosis of the femoral head due to the bilateral injection of heroin into the femoral vein: a case report. Exp Ther Med 6(4):1041–1043. https://doi.org/10.3892/etm.2013.1236

    Article  PubMed  PubMed Central  Google Scholar 

  26. Netter FH (2018) Atlas of human anatomy, 7th edn. Elsevier, Philadelphia

    Google Scholar 

  27. Mei J (2016) Blood supply to the femoral head: discussion of textbook “Surgery”. Chin J Bone Joint 5(12):949–952

    Google Scholar 

  28. Zhao D, Qiu X, Wang B et al (2017) Epiphyseal arterial network and inferior retinacular artery seem critical to femoral head perfusion in adults with femoral neck fractures. Clin Orthop Relat Res 475(8):2011–2023. https://doi.org/10.1007/s11999-017-5318-5

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zlotorowicz M, Czubak-Wrzosek M, Wrzosek P et al (2018) The origin of the medial femoral circumflex artery, lateral femoral circumflex artery and obturator artery. Surg Radiol Anat 40(5):515–520. https://doi.org/10.1007/s00276-018-2012-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Grose AW, Gardner MJ, Sussmann PS et al (2008) The surgical anatomy of the blood supply to the femoral head: description of the anastomosis between the medial femoral circumflex and inferior gluteal arteries at the hip. J Bone Joint Surg Br 90(10):1298–1303. https://doi.org/10.1302/0301-620X.90B10.20983

    Article  PubMed  CAS  Google Scholar 

  31. Tucker FR (1949) Arterial supply to the femoral head and its clinical importance. J Bone Joint Surg Br 31B(1):82–93

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinzhu Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Z., Bai, Q., Ming, B. et al. Detection of vascularity of femoral head using sub-millimeter resolution steady-state magnetic resonance angiography—initial experience. International Orthopaedics (SICOT) 44, 1115–1121 (2020). https://doi.org/10.1007/s00264-020-04564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04564-3

Keywords

Navigation