Skip to main content

Intraosseous injections of platelet rich plasma for knee bone marrow lesions treatment: one year follow-up

Abstract

Purpose

Cartilage lesions are usually accompanied by subchondral bone alterations or bone marrow lesions (BMLs). BML associated with joint degeneration and cartilage lesions are considered to be predictors of rapidly progressing OA. Currently no existing treatment can fully halt OA progression. One of the approaches is an autologous, biological treatment based on the use of platelet rich plasma (PRP) injections. The purpose of this study is to assess the short-term effectiveness of intraosseous PRP injections, within the BML of individuals affected by OA, in ameliorating pain and improving knee functionality.

Materials and methods

The study involved 17 patients with an average age of 41.7 ± 14.3 years old. OA stage was determined using the Kellgren-Lawrence grading system by performing radiographic scanning of the knee joint before surgical intervention. Patients with K–L grade 3 knee joint OA prevailed. Patient OA history varied between one and nine years (average 5.2 ± 4.5 years). Clinical and functional state of the knee were assessed by pain visual analogue scale (VAS) score, the Western Ontario and McMaster Universities Score (WOMAC), and the Knee Injury and Osteoarthritis Outcome Score (KOOS) which were filled out by patients previous to the surgical procedure at one, three, six and 12 months post-operatively. Before surgery, in addition to standard blood tests, serum cartilage oligomeric matrix protein (COMP) levels were tested for all patients.

Results

Evaluation of preliminary results revealed a statistically significant reduction of pain based on the VAS score. A significant improvement was also observed in the patients’ WOMAC score and in the overall KOOS score. Serum marker levels were initially elevated in our experimental patient group compared to the same marker in healthy control respondents, and continued to rise one month and three months following surgery, at six and 12 month the level was similar as at three months.

Conclusions

In our opinion, first COMP increasing can be caused by injection of platelet rich plasma. It is not adequate to interpret this growth in COMP levels as increased osteochondral degeneration. One year follow-up period showed good quality of life improvement, significant pain reduction, and essential MRI changes. The long-term observation of these cohort of patients combined with an analysis of MRI images is still ongoing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Delgado D, Garate A, Hunter V, Bilbao A, Patel R, Fiz AS, Sampson S, Sanchez M (2019) Current concepts in intraosseous platelet-rich plasma injections for knee osteoarthritis. J Clin Orthopaedics Trauma 10:36–41

    Article  Google Scholar 

  2. Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18:419–433

    Article  Google Scholar 

  3. Li et al (2013) Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther 15:223. https://doi.org/10.1186/ar4405

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Kon E, Ronga M, Filardo G, Farr G, Madry H, Milano G, Andriolo L, Shabshin N (2016) Bone marrow lesions and subchondral bone pathology of the knee. Knee Surg Sports Traumatol Arthrosc 24(6):1797–1814. https://doi.org/10.1007/s00167-016-4113-2

    Article  PubMed  Google Scholar 

  5. Appel H, Kuhne M, Spiekermann S, Kohler D, Zacher J, Stein H et al (2006) Immunohistochemical analysis of hip arthritis in ankylosing spondylitis: evaluation of the bone-cartilage interface and subchondral bone marrow. Arthritis Rheum 54:1805–1813

    Article  Google Scholar 

  6. Pelletier JP (2007) Risk factors associated with the loss of cartilage volume on weight-bearing areas in knee osteoarthritis patients assessed by quantitative magnetic resonance imaging: a longitudinal study. Arthritis Res Ther 9(4):R74

    Article  Google Scholar 

  7. Zhao J, Li X, Bolbos RI, Link TM, Majumdar S (2010) Longitudinal assessment of bone marrow edema-like lesions and cartilage degeneration in osteoarthritis using 3 T MR T1rho quantification. Skelet Radiol 39:523–531

    Article  Google Scholar 

  8. Wilson AJ, Murphy WA, Hardy DC, Totty WG (1988) Transient osteoporosis: transient bone marrow edema? Radiology 167:757–760

    CAS  Article  Google Scholar 

  9. Felson DT, McLaughlin S, Goggins J, LaValley MP, Gale ME, Totterman S, Li W, Hill C, Gale D (2003) Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med 139:330–336

    Article  Google Scholar 

  10. Perry T, O'Neill T, Parkes M, Felson DT, Hodgson R, Arden NK (2018) Bone marrow lesion type and pain in knee osteoarthritis. Ann Rheum Dis 77:1145

    Google Scholar 

  11. Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N et al (2003) Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 226:373–381

    Article  Google Scholar 

  12. Roemer FW, Frobell R, Hunter DJ, Crema MD, Fischer W, Bohndorf K et al (2009) MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthr Cartil 17:1115–1131

    CAS  Article  Google Scholar 

  13. Roemer FW et al (2010) Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study. Osteoarthr Cartil 18(1):47–53

    CAS  Article  Google Scholar 

  14. Peterfy CG et al (2004) Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil 12(3):177–190

    CAS  Article  Google Scholar 

  15. Abhishek A, Doherty M (2013) Diagnosis and clinical presentation of osteoarthritis. Rheum Dis Clin N Am 39(1):45–66. https://doi.org/10.1016/j.rdc.2012.10.007

    CAS  Article  Google Scholar 

  16. Mayerhoefer ME, Breitenseher MJ, Kramer J, Aigner N, Norden C, Hofmann S (2005) STIR vs. T1- weighted fat-suppressed gadolinium-enhanced MRI of bone marrow edema of the knee: computer-assisted quantitative comparison and influence of injected contrast media volume and acquisition parameters. J Magn Reson Imaging 22:788–793

    Article  Google Scholar 

  17. McAlindon TE, Watt I, McCrae F, Goddard P, Dieppe PA (1991) Magnetic resonance imaging in osteoarthritis of the knee: correlation with radiographic and scintigraphic findings. Ann Rheum Dis 50:14–19

    CAS  Article  Google Scholar 

  18. Ahlback S, Bauer GC, Bohne WH (1968) Spontaneous osteonecrosis of the knee. Arthritis Rheum 11(6):705–733

    CAS  Article  Google Scholar 

  19. Wluka AE, Hanna F, Davies-Tuck M, Wang Y, Bell RJ, Davis SR, Adams J, Cicuttini FM (2009) Bone marrow lesions predict increase in knee cartilage defects and loss of cartilage volume in middle-aged women without knee pain over 2 years. Ann Rheum Dis 68:850–855

    CAS  Article  Google Scholar 

  20. Odding E et al (1998) Associations of radiological osteoarthritis of the hip and knee with locomotor disability in the Rotterdam study. Ann Rheum Dis 57(4):203–208

    CAS  Article  Google Scholar 

  21. Sowers MF et al (2003) Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthr Cartil 11(6):387–393

    CAS  Article  Google Scholar 

  22. Hunter DJ, Gerstenfeld L, Bishop G, Davis AD, Mason ZD, Einhorn TA, Maciewicz RA, Newham P, Foster M, Jackson S, Morgan EF (2009) Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized. Arthritis Res Ther 11:R11

    Article  Google Scholar 

  23. Manicourt DH, Brasseur JP, Boutsen Y, Depreseux G, Devogelaer JP (2004) Role of alendronate in therapy for posttraumatic complex regional pain syndrome type I of the lower extremity. Arthritis Rheum 50:3690–3697

    CAS  Article  Google Scholar 

  24. Lecouvet FE, van de Berg BC, Maldague BE, Lebon CJ, Jamart J, Saleh M, Noel H, Malghem J (1988) Early irreversible osteonecrosis versus transient lesions of the femoral condyles: prognostic value of subchondral bone and marrow changes on MR imaging. AJR Am J Roentgenol 170:71–77

    Article  Google Scholar 

  25. Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB (2006) MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthr Cartil 14:1081–1085

    CAS  Article  Google Scholar 

  26. Radke S, Rader C, Kenn W, Kirschner S, Walther M, Eulert J (2003) Transient marrow edema syndrome of the hip: results after core decompression. A prospective MRI-controlled study in 22 patients. Arch Orthop Trauma 123:223–227

    CAS  Article  Google Scholar 

  27. Kohn MD, Sassoon AA, Fernando ND (2016) Classifications in brief: Kellgren-Lawrence classification of osteoarthritis. Clin Orthop Relat Res 474(8):1886–1893. https://doi.org/10.1007/S11999-016-4732-4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marot V, Murgier J, Carrozzo A, Reina N, Monaco E, Chiron P, Berard E, Cavaignac E (2019) Determination of normal KOOS and WOMAC values in a healthy population. Knee Surg Sports Traumatol Arthrosc 27(2):541–548. https://doi.org/10.1007/s00167-018-5153-6

    Article  PubMed  Google Scholar 

  29. Bellido M, Lugo L, Roman-Blas JA et al (2011) Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthr Cartil 19(10):1228–1236

    CAS  Article  Google Scholar 

  30. Vasina EM, Cauwenberghs S, Feijge MA, Heemskerk JW, Weber C, Koenen RR (2011) Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death Dis 2:211

    Article  Google Scholar 

  31. Liu-Bryan R, Terkeltaub R (2015) Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol 11(1):35–44

    CAS  Article  Google Scholar 

  32. Tohidnezhad M, Wruck CJ, Slowik A et al (2014) Role of platelet-released growth factors in detoxification of reactive oxygen species in osteoblasts. Bone 65:9–17

    CAS  Article  Google Scholar 

  33. Cohen SB, Sharkey PF (2016) Subchondroplasty for treating bone marrow lesions. J Knee Surg 29(7):555–563

    PubMed  Google Scholar 

  34. Bonadio MB, Giglio PN, Helito CP, Pécora JR, Camanho GL, Demange MK (2017) Subchondroplasty for treating bone marrow lesions in the knee - initial experience. Rev Bras Ortop 52(3):325–330. https://doi.org/10.1016/j.rboe.2017.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  35. Marcacci M, Filardo G, Kon E (2013) Treatment of cartilage lesions: what works and why? Injury 44(Suppl. 1):S11–S15

    Article  Google Scholar 

  36. Bi X (2018) Correlation of serum cartilage oligomeric matrix protein with knee osteoarthritis diagnosis: a meta-analysis. J Orthop Surg Res 13(1):262. https://doi.org/10.1186/s13018-018-0959-y

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hao HQ, Zhang JF, He QQ, Wang Z (2019) Cartilage oligomeric matrix protein, C-terminal cross-linking telopeptide of type II collagen, and matrix metalloproteinase-3 as biomarkers for knee and hip osteoarthritis (OA) diagnosis: a systematic review and meta-analysis. Osteoarthr Cartil 27(5):726–736. https://doi.org/10.1016/j.joca.2018.10.009

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lipina.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration ant its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lychagin, A., Lipina, M., Garkavi, A. et al. Intraosseous injections of platelet rich plasma for knee bone marrow lesions treatment: one year follow-up. International Orthopaedics (SICOT) 45, 355–363 (2021). https://doi.org/10.1007/s00264-020-04546-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04546-5

Keywords

  • Osteoarthritis
  • Bone marrow lesions
  • Joint degeneration
  • Cartilage lesions
  • Platelet reach plasma
  • Biological treatment
  • Subchondral bone
  • Intraosseous injections