Skip to main content
Log in

The tridimensional geometry of the proximal femur should determine the design of cementless femoral stem in total hip arthroplasty

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Using a cementless femoral stem in total hip arthroplasty (THA), optimal filling of the proximal femoral metaphyseal volume (PFMV) and restoration of the extramedullary proximal femoral (PF) parameters (i.e., femoral offset (FO), neck length (FNL), and head height (FHH)) constitute key goals for optimal hip biomechanics, functional outcome, and THA survivorship. However, almost 30% of mismatch between the PF anatomy and implant geometry of the most widely implanted non-modular cementless femoral stem has been demonstrated in a computed tomography scan (CT scan) study. Therefore, this anatomic study aimed to evaluate the relationship between the intra- and extramedullary PF parameters using tridimensional CT scan reconstructions.

Methods

One hundred fifty-one CT scans of adult healthy hips were obtained from 151 male Caucasian patients (mean age = 66 ± 11 years) undergoing lower limb CT scan arteriography. Tridimensional PF reconstructions and parameter measurements were performed using a corrected PF coronal plane—defined by the femoral neck and diaphyseal canal longitudinal axes—to avoid influence of PF helitorsion and femoral neck version on extramedullary PF parameters.

Results

Independently of the femoral neck-shaft angle, the PFMV was significantly and positively correlated with the FO, FNL, and FHH (r = 0.407 to 0.420; p < 0.0001).

Conclusion

This study emphasized that the tridimensional PF geometry measurement in the corrected coronal plane of the femoral neck can be useful to determine and optimize the design of a non-modular cementless femoral stem. Particularly, continuous homothetic size progression of the intra- and extramedullary PF parameters should be achieved to assure stem fixation and restore anatomic hip biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dorr LD, Faugere MC, Mackel AM, Gruen TA, Bognar B, Malluche HH (1993) Structural and cellular assessment of bone quality of proximal femur. Bone 14:231–242

    Article  CAS  Google Scholar 

  2. Laine HJ, Lehto MU, Moilanen T (2000) Diversity of proximal femur medullary canal. J Arthroplast 15:86–92

    Article  CAS  Google Scholar 

  3. Noble PC, Alexander JW, Lindahl LJ, Yew DT, Granberry WM, Tullos HS (1988) The anatomic basis of femoral component design. Clin Orthop Relat Res (235):148–165

  4. Rubin PJ, Leyvraz PF, Aubaniac JM, Argenson JN, Estève P, de Roguin B (1992) The morphology of the proximal femur. A three-dimensional radiographic analysis. J Bone Joint Surg Br 74-B:28–32

    Article  Google Scholar 

  5. Husmann O, Rubin PJ, Leyvraz PF, de Roguin B, Argenson JN (1997) Three-dimensional morphology of the proximal femur. J Arthroplast 12:444–450

    Article  CAS  Google Scholar 

  6. Merle C, Waldstein W, Gregory JS, Goodyear SR, Aspden RM, Aldinger PR, Murray DW, Gill HS (2014) How many different types of femora are there in primary hip osteoarthritis? An active shape modeling study. J Orthop Res 32:413–422. https://doi.org/10.1002/jor.22518

    Article  CAS  PubMed  Google Scholar 

  7. Flecher X, Ollivier M, Argenson JN (2016) Lower limb length and offset in total hip arthroplasty. Orthop Traumatol Surg Res 102:S9–S20. https://doi.org/10.1016/j.otsr.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  8. Matsushita A, Nakashima Y, Jingushi S, Yamamoto T, Kuraoka A, Iwamoto Y (2009) Effects of the femoral offset and the head size on the safe range of motion in total hip arthroplasty. J Arthroplast 24:646–651. https://doi.org/10.1016/j.arth.2008.02.008

    Article  Google Scholar 

  9. McGrory BJ, Morrey BF, Cahalan TD, An KN, Cabanela ME (1995) Effects of femoral offset on range of motion and abductor muscle strength after total hip arthroplasty. J Bone Joint Surg Br 77:865–869

    Article  CAS  Google Scholar 

  10. Sakalkale DP, Sharkey PF, Eng K, Hozack WJ, Rothman RH (2001) Effects of femoral component offset on polyethylene wear in total hip arthroplasty. Clin Orthop Relat Res 388:125–134

    Article  Google Scholar 

  11. Asayama I, Chamnongkich S, Simpson KJ, Kinsey TL, Mahoney OM (2005) Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty. J Arthroplast 20:414–420

    Article  Google Scholar 

  12. Bourne RB, Rorabeck CH (2002) Soft tissue balancing: the hip. J Arthroplast 17(Suppl 1):17–22

    Article  Google Scholar 

  13. Sariali E, Klouche S, Mouttet A, Pascal-Moussellard H (2014) The effect of femoral offset modification on gait after total hip arthroplasty. Acta Orthop 85:123–127. https://doi.org/10.3109/17453674.2014.889980

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rudiger HA, Parvex V, Terrier A (2016) Impact of the femoral head position on moment arms in total hip arthroplasty: a parametric finite element study. J Arthroplast 31:715–720. https://doi.org/10.1016/j.arth.2015.09.044

    Article  Google Scholar 

  15. Boese CK, Dargel J, Jostmeier J, Eysel P, Frink M, Lechler P (2016) Agreement between proximal femoral geometry and component design in total hip arthroplasty: implications for implant choice. J Arthroplast 31(8):1842. https://doi.org/10.1016/j.arth.2016.02.015

    Article  Google Scholar 

  16. Sariali E, Mouttet A, Pasquier G, Durante E (2009) Three-dimensional hip anatomy in osteoarthritis. Analysis of the femoral offset. J Arthroplasty 24:990–997. https://doi.org/10.1016/j.arth.2008.04.031

    Article  PubMed  Google Scholar 

  17. Sariali E, Mouttet A, Pasquier G, Durante E, Catone Y (2009) Accuracy of reconstruction of the hip using computerised three-dimensional pre-operative planning and a cementless modular neck. J Bone Joint Br 91:333–340. https://doi.org/10.1302/0301-620X.91B3.21390

    Article  CAS  Google Scholar 

  18. Lecerf G, Fessy MH, Philippot R, Massin P, Giraud F, Flecher X, Girard J, Mertl P, Marchetti E, Stindel E (2009) Femoral offset: anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg Res 95:210–219. https://doi.org/10.1016/j.otsr.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  19. Massin P, Geais L, Astoin E, Simondi M, Lavaste F (2000) The anatomic basis for the concept of lateralized femoral stems: a frontal plane radiographic study of the proximal femur. J Arthroplasty 15:93–101

    Article  CAS  Google Scholar 

  20. Baharuddin MY, Salleh SH, Zulkifly AH, Lee MH, Noor AM, A Harris AR, Majid NA, Abd Kader AS (2014) Design process of cementless femoral stem using a nonlinear three dimensional finite element analysis. BMC Musculoskelet Disord 15:30. https://doi.org/10.1186/1471-2474-15-30

    Article  PubMed  PubMed Central  Google Scholar 

  21. Boese CK, Dargel J, Oppermann J, Eysel P, Scheyerer MJ, Bredow J, Lechler P (2016) The femoral neck-shaft angle on plain radiographs: a systematic review. Skelet Radiol 45:19–28. https://doi.org/10.1007/s00256-015-2236-z

    Article  Google Scholar 

  22. Issa K, Pivec R, Wuestemann T, Tatevossian T, Nevelos J, Mont MA (2014) Radiographic fit and fill analysis of a new second-generation proximally coated cementless stem compared to its predicate design. J Arthroplast 29:192–198. https://doi.org/10.1016/j.arth.2013.04.029

    Article  Google Scholar 

  23. Dujardin FH, Mollard R, Toupin JM, Coblentz A, Thomine JM (1996) Micromotion, fit, and fill of custom made femoral stems designed with an automated process. Clin Orthop Relat Res 325:276–289

    Article  Google Scholar 

  24. Saito J, Aslam N, Tokunaga K, Schemitsch EH, Waddell JP (2006) Bone remodeling is different in metaphyseal and diaphyseal-fit uncemented hip stems. Clin Orthop Relat Res 451:128–133. https://doi.org/10.1097/01.blo.0000224045.63754.a3

    Article  PubMed  Google Scholar 

  25. Vidalain JP (2011) Twenty-year results of the cementless Corail stem. Int Orthop 35:189–194. https://doi.org/10.1007/s00264-010-1117-2

    Article  PubMed  Google Scholar 

  26. Jacquot L, Bonnin MP, Machenaud A, Chouteau J, Saffarini M, Vidalain JP (2017) Clinical and radiographic outcomes at 25-30 years of a hip stem fully coated with hydroxylapatite. J Arthroplast. https://doi.org/10.1016/j.arth.2017.09.040

    Article  Google Scholar 

  27. Flecher X, Pearce O, Parratte S, Aubaniac JM, Argenson JN (2010) Custom cementless stem improves hip function in young patients at 15-year followup. Clin Orthop Relat Res 468:747–755. https://doi.org/10.1007/s11999-009-1045-x

    Article  PubMed  Google Scholar 

  28. Pakos EE, Stafilas KS, Tsovilis AE, Vafiadis JN, Kalos NK, Xenakis TA (2015) Long term outcomes of total hip arthroplasty with custom made femoral implants in patients with congenital disease of hip. J Arthroplast 30:2242–2247. https://doi.org/10.1016/j.arth.2015.06.038

    Article  Google Scholar 

  29. Colas S, Allalou A, Poichotte A, Piriou P, Dray-Spira R, Zureik M (2017) Exchangeable femoral neck (dual-modular) THA prostheses have poorer survivorship than other designs: a nationwide cohort of 324,108 patients. Clin Orthop Relat Res 475:2046–2059. https://doi.org/10.1007/s11999-017-5260-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bernstein DT, Meftah M, Paranilam J, Incavo SJ (2016) Eighty-six percent failure rate of a modular-neck femoral stem design at 3 to 5 years: lessons learned. J Bone Joint Surg Am 98:e49. https://doi.org/10.2106/JBJS.15.01082

    Article  PubMed  Google Scholar 

  31. Kwon YM, Khormaee S, Liow MH, Tsai TY, Freiberg AA, Rubash HE (2016) Asymptomatic pseudotumors in patients with taper corrosion of a dual-taper modular femoral stem: MARS-MRI and metal ion study. J Bone Joint Surg Am 98:1735–1740. https://doi.org/10.2106/JBJS.15.01325

    Article  PubMed  Google Scholar 

  32. Terrier A, Levrero Florencio F, Rüdiger HA (2014) Benefit of cup medicalization in total hip arthroplasty is associated with femoral anatomy. Clin Orthop Relat Res 472:3159–3165. https://doi.org/10.1007/s11999-014-3787-3

    Article  PubMed  PubMed Central  Google Scholar 

  33. Boese CK, Jostmeier J, Oppermann J, Dargel J, Chang DH, Eysel P, Lechler P (2016) The neck shaft angle: CT reference value of 800 hips. Skelet Radiol 45:455–463. https://doi.org/10.1007/s00256-015-2314-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the AXIOM orthopaedic group for providing assistance in CT scan selection and revision of the manuscript content.

Funding

This study was internally funded by the research laboratory INSERM UMR1033, Université de Lyon, Lyon, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Wegrzyn.

Ethics declarations

Conflict of interest

JPR and CL declare that they have no conflict of interest. JW, NB, and VP declare royalties perceived from Dedienne Santé, Maugio, France. JW serves as paid consultant for Stryker, Mahwah, NJ, USA.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of our institutional and the French national research committees, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

As this study evaluated anonymized data issued from CT scan primarily performed for clinical purpose and not research, informed consent was not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wegrzyn, J., Roux, JP., Loriau, C. et al. The tridimensional geometry of the proximal femur should determine the design of cementless femoral stem in total hip arthroplasty. International Orthopaedics (SICOT) 42, 2329–2334 (2018). https://doi.org/10.1007/s00264-018-3843-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-018-3843-9

Keywords

Navigation