Advertisement

International Orthopaedics

, Volume 42, Issue 7, pp 1705–1709 | Cite as

The biological basis for concentrated iliac crest aspirate to enhance core decompression in the treatment of osteonecrosis

Review Article

Abstract

Core decompression is a surgical procedure that is capable of salvaging the patient’s own natural joint, if the operation is performed in the early stages of osteonecrosis, in which the articular surface has not collapsed. The addition of concentrated cells, aspirated from the iliac crest, to the core tract has been shown to enhance the viability of the femoral head, although large, prospective, randomized, blinded multicentre studies are lacking. The rationale for adding these cells to the core decompression tract is to provide osteoprogenitor and vascular progenitor cells to the area of decompressed dead bone, in order to facilitate tissue regeneration and repair. It has become increasingly evident that vast discrepancies exist in different series in regard to the criteria for patient selection, the surgical technique of core decompression, the methods for harvesting, processing, and injecting the cells, and the methodology for determining success or failure in a specific patient cohort. This paper reviews the salient points relevant to the treatment of osteonecrosis by core decompression with addition of concentrated iliac crest aspirates and poses important questions regarding the future successful application of this technique.

Keywords

Osteonecrosis Core decompression Iliac crest aspirate Osteogenesis Bone healing 

Notes

Funding information

This work was supported in part by NIH grants R01AR063717-06 and NCATS 1UG3TR002136-01, and the Ellenburg Chair in Surgery at Stanford University.

References

  1. 1.
    Mont MA, Carbone JJ, Fairbank AC (1996) Core decompression versus nonoperative management for osteonecrosis of the hip. Clin Orthop Relat Res 324:169–178CrossRefGoogle Scholar
  2. 2.
    Mont MA, Cherian JJ, Sierra RJ, Jones LC, Lieberman JR (2015) Nontraumatic osteonecrosis of the femoral head: where do we stand today? A ten-year update. J Bone Joint Surg Am 97(19):1604–1627CrossRefPubMedGoogle Scholar
  3. 3.
    Moya-Angeler J, Gianakos AL, Villa JC, Ni A, Lane JM (2015) Current concepts on osteonecrosis of the femoral head. World J Orthop 6(8):590–601CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chughtai M, Piuzzi NS, Khlopas A, Jones LC, Goodman SB, Mont MA (2017) An evidence-based guide to the treatment of osteonecrosis of the femoral head. Bone Joint J 99-B(10):1267–1279CrossRefPubMedGoogle Scholar
  5. 5.
    Bozic KJ, Zurakowski D, Thornhill TS (1999) Survivorship analysis of hips treated with core decompression for nontraumatic osteonecrosis of the femoral head. J Bone Joint Surg Am 81(2):200–209CrossRefPubMedGoogle Scholar
  6. 6.
    Hernigou P, Beaujean F (2002) Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 405:14–23CrossRefGoogle Scholar
  7. 7.
    Hernigou P, Flouzat-Lachaniette CH, Delambre J, Poignard A, Allain J, Chevallier N, Rouard H (2015) Osteonecrosis repair with bone marrow cell therapies: state of the clinical art. Bone 70:102–109CrossRefPubMedGoogle Scholar
  8. 8.
    Houdek MT, Wyles CC, Martin JR, Sierra RJ (2014) Stem cell treatment for avascular necrosis of the femoral head: current perspectives. Stem Cells Cloning Adv Appl 7:65–70Google Scholar
  9. 9.
    Papakostidis C, Tosounidis TH, Jones E, Giannoudis PV (2016) The role of “cell therapy” in osteonecrosis of the femoral head. A systematic review of the literature and meta-analysis of 7 studies. Acta Orthop 87(1):72–78CrossRefPubMedGoogle Scholar
  10. 10.
    Goodman SB, Hwang KL (2015) Treatment of secondary osteonecrosis of the knee with local debridement and osteoprogenitor cell grafting. J Arthroplast 30(11):1892–1896CrossRefGoogle Scholar
  11. 11.
    Lieberman JR, Varthi AG, Polkowski GG 2nd (2014) Osteonecrosis of the knee—which joint preservation procedures work? J Arthroplast 29(1):52–56CrossRefGoogle Scholar
  12. 12.
    Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390PubMedGoogle Scholar
  13. 13.
    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6(2):230–247CrossRefPubMedGoogle Scholar
  14. 14.
    Caplan AI (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 6(6):1445–1451CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437PubMedGoogle Scholar
  16. 16.
    Hernigou P, Poignard A, Zilber S, Rouard H (2009) Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop 43(1):40–45CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79(11):1699–1709CrossRefPubMedGoogle Scholar
  18. 18.
    Patterson TE, Boehm C, Nakamoto C, Rozic R, Walker E, Piuzzi NS, Muschler GF (2017) The efficiency of bone marrow aspiration for the harvest of connective tissue progenitors from the human iliac crest. J Bone Joint Surg Am 99(19):1673–1682CrossRefPubMedGoogle Scholar
  19. 19.
    Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19(1):117–125CrossRefPubMedGoogle Scholar
  20. 20.
    Piuzzi NS, Chahla J, Jiandong H, Chughtai M, LaPrade RF, Mont MA, Muschler GF, Pascual-Garrido C (2017) Analysis of cell therapies used in clinical trials for the treatment of osteonecrosis of the femoral head: a systematic review of the literature. J Arthroplast 32(8):2612–2618CrossRefGoogle Scholar
  21. 21.
    Piuzzi NS, Chahla J, Schrock JB, LaPrade RF, Pascual-Garrido C, Mont MA, Muschler GF (2017) Evidence for the use of cell-based therapy for the treatment of osteonecrosis of the femoral head: a systematic review of the literature. J Arthroplast 32(5):1698–1708CrossRefGoogle Scholar
  22. 22.
    Hernigou P, Trousselier M, Roubineau F, Bouthors C, Chevallier N, Rouard H, Flouzat-Lachaniette CH (2016) Stem cell therapy for the treatment of hip osteonecrosis: a 30-year review of progress. Clin Orthop Surg 8(1):1–8CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Thoesen MS, Berg-Foels WS, Stokol T, Rassnick KM, Jacobson MS, Kevy SV, Todhunter RJ (2006) Use of a centrifugation-based, point-of-care device for production of canine autologous bone marrow and platelet concentrates. Am J Vet Res 67(10):1655–1661CrossRefPubMedGoogle Scholar
  24. 24.
    Hegde V, Shonuga O, Ellis S, Fragomen A, Kennedy J, Kudryashov V, Lane JM (2014) A prospective comparison of 3 approved systems for autologous bone marrow concentration demonstrated nonequivalency in progenitor cell number and concentration. J Orthop Trauma 28(10):591–598CrossRefPubMedGoogle Scholar
  25. 25.
    Krebsbach PH, Kuznetsov SA, Bianco P, Robey PG (1999) Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med 10(2):165–181CrossRefPubMedGoogle Scholar
  26. 26.
    Caralla T, Boehm C, Hascall V, Muschler G (2012) Hyaluronan as a novel marker for rapid selection of connective tissue progenitors. Ann Biomed Eng 40(12):2559–2567CrossRefPubMedGoogle Scholar
  27. 27.
    Caralla T, Joshi P, Fleury S, Luangphakdy V, Shinohara K, Pan H, Boehm C, Vasanji A, Hefferan TE, Walker E et al (2013) In vivo transplantation of autogenous marrow-derived cells following rapid intraoperative magnetic separation based on hyaluronan to augment bone regeneration. Tissue Eng A 19(1–2):125–134CrossRefGoogle Scholar
  28. 28.
    Joshi P, Williams PS, Moore LR, Caralla T, Boehm C, Muschler G, Zborowski M (2015) Circular Halbach array for fast magnetic separation of hyaluronan-expressing tissue progenitors. Anal Chem 87(19):9908–9915CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Muschler GF, Matsukura Y, Nitto H, Boehm CA, Valdevit AD, Kambic HE, Davros WJ, Easley KA, Powell KA (2005) Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res 432:242–251CrossRefGoogle Scholar
  30. 30.
    Luangphakdy V, Boehm C, Pan H, Herrick J, Zaveri P, Muschler GF (2016) Assessment of methods for rapid intraoperative concentration and selection of marrow-derived connective tissue progenitors for bone regeneration using the canine femoral multidefect model. Tissue Eng A 22(1–2):17–30CrossRefGoogle Scholar
  31. 31.
    Bunpetch V, Wu H, Zhang S, Ouyang H (2017) From “bench to bedside”: current advancement on large-scale production of mesenchymal stem cells. Stem Cells Dev 26(22):1662–1673CrossRefPubMedGoogle Scholar
  32. 32.
    Lambrechts T, Sonnaert M, Schrooten J, Luyten FP, Aerts JM, Papantoniou I (2016) Large-scale mesenchymal stem/stromal sell expansion: a visualization tool for bioprocess comparison. Tissue Eng B Rev 22(6):485–498CrossRefGoogle Scholar
  33. 33.
    Wuchter P, Bieback K, Schrezenmeier H, Bornhauser M, Muller LP, Bonig H, Wagner W, Meisel R, Pavel P, Tonn T et al (2015) Standardization of good manufacturing practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 17(2):128–139CrossRefPubMedGoogle Scholar
  34. 34.
    Sensebe L, Bourin P, Tarte K (2011) Good manufacturing practices production of mesenchymal stem/stromal cells. Hum Gene Ther 22(1):19–26CrossRefPubMedGoogle Scholar
  35. 35.
    Sensebe L, Gadelorge M, Fleury-Cappellesso S (2013) Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res Ther 4(3):66CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Arlet J, Ficat P, Sebbag D (1969) The use of measurement of intramedullary pressure in the greater trochanter in man, particularly in the diagnosis of osteonecrosis of the femoral head. Rev Rhum Mal Osteoartic 35(5):250–256Google Scholar
  37. 37.
    Mao Q, Wang W, Xu T, Zhang S, Xiao L, Chen D, Jin H, Tong P (2015) Combination treatment of biomechanical support and targeted intra-arterial infusion of peripheral blood stem cells mobilized by granulocyte-colony stimulating factor for the osteonecrosis of the femoral head: a randomized controlled clinical trial. J Bone Miner Res 30(4):647–656CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Prockop DJ (2009) Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther 17(6):939–946CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Prockop DJ, Kota DJ, Bazhanov N, Reger RL (2010) Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med 14(9):2190–2199CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Caplan AI (2017) New MSC: MSCs as pericytes are sentinels and gatekeepers. J Orthop Res 35(6):1151–1159CrossRefPubMedGoogle Scholar
  41. 41.
    Caplan AI (2015) Adult mesenchymal stem cells: when, where, and how. Stem Cells Int 2015:628767CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Connolly JF, Guse R, Tiedeman J, Dehne R (1991) Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin Orthop Relat Res 266:259–270Google Scholar
  43. 43.
    Hossain MA, Chowdhury T, Bagul A (2015) Imaging modalities for the in vivo surveillance of mesenchymal stromal cells. J Tissue Eng Regen Med 9(11):1217–1224CrossRefPubMedGoogle Scholar
  44. 44.
    Sohni A, Verfaillie CM (2013) Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013:130763CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Khurana A, Nejadnik H, Chapelin F, Lenkov O, Gawande R, Lee S, Gupta SN, Aflakian N, Derugin N, Messing S et al (2013) Ferumoxytol: a new, clinically applicable label for stem-cell tracking in arthritic joints with MRI. Nanomedicine (Lond) 8(12):1969–1983CrossRefGoogle Scholar
  46. 46.
    Lin CS, Xin ZC, Dai J, Lue TF (2013) Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges. Histol Histopathol 28(9):1109–1116PubMedPubMedCentralGoogle Scholar
  47. 47.
    Zwingenberger S, Yao Z, Jacobi A, Vater C, Valladares RD, Li C, Nich C, Rao AJ, Christman JE, Antonios JK et al (2014) Enhancement of BMP-2 induced bone regeneration by SDF-1α mediated stem cell recruitment. Tissue Eng A 20(3–4):810–818Google Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  1. 1.Departments of Orthopaedic Surgery and BioengineeringStanford UniversityStanfordUSA
  2. 2.Department of Orthopaedic SurgeryStanford University School of MedicineRedwood CityUSA

Personalised recommendations