International Orthopaedics

, Volume 42, Issue 5, pp 1075–1082 | Cite as

Long-term pathological gait pattern changes after talus fractures — dynamic measurements with a new insole

  • Benedikt J. Braun
  • Patrick Pelz
  • Nils T. Veith
  • Mika Rollmann
  • Moritz Klein
  • Steven C. Herath
  • Jörg H. Holstein
  • Tim Pohlemann
Original Paper



The aim of the current study was to describe long-term gait changes after talus fractures, identify patterns associated with poor outcome and discuss possible treatment options based on dynamic gait analysis.


Twenty-seven patients were followed-up clinically and via gait analysis after talus fracture osteosynthesis. Continuous dynamic pedobarography with a gait analysis insole was performed on a standardized parcours consisting of different gait tasks and matched to the outcome.


Mean follow-up was 78.3 months (range 21–150), mean AOFAS and Olerud-Molander scores 66 (range 20–100) and 54 (range 15–100). Significant correlations between fracture classification and osteoarthritis (Hawkins: rs = 0.67 / Marti-Weber: rs = 0.5) as well as several gait differences between injured and healthy foot with correlations to outcome were seen: decreased step load-integral/maximum-load; associations between centre-of-pressure displacement and outcome as well as between temporospatial measures and outcome. Overall, pressure-distribution was lateralized in patients with subtalar joint injury (Δ: 0.5765 N/cm2, p = 0.0475).


Talus fractures lead to chronic gait changes and restricted function. Dynamic pedobarography can identify patterns associated with poor results. The observed gait patterns suggest that changes can be addressed by physical therapy and customized orthoses to improve overall outcome. The presented insole and measurement protocol are immediately feasible as a diagnostic and rehabilitation aid.


Talus Fracture Gait analysis Pedobarography 



We thank Sabine Drum, Martina Schweikert and Anh Tuan Vu for their excellent technical support and Ann Soether for her language editing.

Compliance with ethical standards

Conflict of interest

The insole material for this study was provided by the TK System of the AO Foundation. Senior Author Prof. Tim Pohlemann is Chairman of the TK System of the AO Foundation. Authors Tim Pohlemann and Benedikt Braun have served as unpaid advisors to Moticon GmbH. No further conflict of interest or funding sources exist.


  1. 1.
    Ahmad J, Raikin SM (2006) Current concepts review: talar fractures. Foot Ankle Int 27(6):475–482CrossRefPubMedGoogle Scholar
  2. 2.
    Halvorson JJ, Winter SB, Teasdall RD, Scott AT (2013) Talar neck fractures: a systematic review of the literature. J Foot Ankle Surg 52(1):56–61. CrossRefPubMedGoogle Scholar
  3. 3.
    Fournier A, Barba N, Steiger V, Lourdais A, Frin JM, Williams T, Falaise V, Pineau V, Salle de Chou E, Noailles T, Carvalhana G, Ruhlmann F, Huten D (2012) Total talar fracture - long-term results of internal fixation of talar fractures. A multicentric study of 114 cases. Orthop Traumatol Surg Res 98(4 Suppl):S48–S55. CrossRefPubMedGoogle Scholar
  4. 4.
    Rammelt S, Zwipp H (2009) Talar neck and body fractures. Injury 40(2):120–135. CrossRefPubMedGoogle Scholar
  5. 5.
    Sanders DW, Busam M, Hattwick E, Edwards JR, McAndrew MP, Johnson KD (2004) Functional outcomes following displaced talar neck fractures. J Orthop Trauma 18(5):265–270CrossRefPubMedGoogle Scholar
  6. 6.
    Colak TK, Colak I, Timurtas E, Bulut G, Polat MG (2016) Pedobarographic and radiological analysis after treating a talus neck fracture. J Foot Ankle Surg 55(6):1216–1222. CrossRefPubMedGoogle Scholar
  7. 7.
    Jansen H, Fenwick A, Doht S, Frey S, Meffert R (2013) Clinical outcome and changes in gait pattern after pilon fractures. Int Orthop 37(1):51–58. CrossRefPubMedGoogle Scholar
  8. 8.
    Hirschmuller A, Konstantinidis L, Baur H, Muller S, Mehlhorn A, Kontermann J, Grosse U, Sudkamp NP, Helwig P (2011) Do changes in dynamic plantar pressure distribution, strength capacity and postural control after intra-articular calcaneal fracture correlate with clinical and radiological outcome? Injury 42(10):1135–1143. CrossRefPubMedGoogle Scholar
  9. 9.
    Jansen H, Frey SP, Ziegler C, Meffert RH, Doht S (2013) Results of dynamic pedobarography following surgically treated intra-articular calcaneal fractures. Arch Orthop Trauma Surg 133(2):259–265. CrossRefPubMedGoogle Scholar
  10. 10.
    Mayich DJ, Novak A, Vena D, Daniels TR, Brodsky JW (2014) Gait analysis in orthopedic foot and ankle surgery--topical review, part 1: principles and uses of gait analysis. Foot Ankle Int 35(1):80–90. CrossRefPubMedGoogle Scholar
  11. 11.
    Braun BJ, Veith NT, Rollmann M, Orth M, Fritz T, Herath SC, Holstein JH, Pohlemann T (2017) Weight-bearing recommendations after operative fracture treatment-fact or fiction? Gait results with and feasibility of a dynamic, continuous pedobarography insole. Int Orthop 41(8):1507–1512. CrossRefPubMedGoogle Scholar
  12. 12.
    Braun BJ, Bushuven E, Hell R, Veith NT, Buschbaum J, Holstein JH, Pohlemann T (2016) A novel tool for continuous fracture aftercare - clinical feasibility and first results of a new telemetric gait analysis insole. Injury 47(2):490–494. CrossRefPubMedGoogle Scholar
  13. 13.
    Braun BJ, Veith NT, Hell R, Dobele S, Roland M, Rollmann M, Holstein J, Pohlemann T (2015) Validation and reliability testing of a new, fully integrated gait analysis insole. J Foot Ankle Res 8:54. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Canale ST, Kelly FB Jr (1978) Fractures of the neck of the talus. Long-term evaluation of seventy-one cases. J Bone Joint Surg Am 60(2):143–156CrossRefPubMedGoogle Scholar
  15. 15.
    Kubosch EJ, Erdle B, Izadpanah K, Kubosch D, Uhl M, Sudkamp NP, Niemeyer P (2016) Clinical outcome and T2 assessment following autologous matrix-induced chondrogenesis in osteochondral lesions of the talus. Int Orthop 40(1):65–71. CrossRefPubMedGoogle Scholar
  16. 16.
    Olerud C, Molander H (1984) A scoring scale for symptom evaluation after ankle fracture. Arch Orthop Trauma Surg 103(3):190–194CrossRefPubMedGoogle Scholar
  17. 17.
    Bargon G, Henkemeyer H (1977) Long-term radiological and clinical observations following surgery for tibio-fibular syndesmosis after fractures of the upper ankle joint (author's transl). RoFo 126(6):542–545. CrossRefPubMedGoogle Scholar
  18. 18.
    Rammelt S, Biewener A, Grass R, Zwipp H (2005) Foot injuries in the polytraumatized patient. Unfallchirurg 108(10):858–865CrossRefPubMedGoogle Scholar
  19. 19.
    Metzger MJ, Levin JS, Clancy JT (1999) Talar neck fractures and rates of avascular necrosis. J Foot Ankle Surg 38(2):154–162CrossRefPubMedGoogle Scholar
  20. 20.
    Pajenda G, Vecsei V, Reddy B, Heinz T (2000) Treatment of talar neck fractures: clinical results of 50 patients. J Foot Ankle Surg 39(6):365–375CrossRefPubMedGoogle Scholar
  21. 21.
    Genc Y, Gultekin A, Duymus TM, Mutlu S, Mutlu H, Komur B (2015) Pedobarography in the assessment of postoperative calcaneal fracture pressure with gait. J Foot Ankle Surg.
  22. 22.
    Piriou P, Culpan P, Mullins M, Cardon JN, Pozzi D, Judet T (2008) Ankle replacement versus arthrodesis: a comparative gait analysis study. Foot Ankle Int 29(1):3–9. CrossRefPubMedGoogle Scholar
  23. 23.
    Mickle KJ, Munro BJ, Lord SR, Menz HB, Steele JR (2011) Cross-sectional analysis of foot function, functional ability, and health-related quality of life in older people with disabling foot pain. Arthritis care & research 63(11):1592–1598. CrossRefGoogle Scholar
  24. 24.
    Baratto L, Morasso PG, Re C, Spada G (2002) A new look at posturographic analysis in the clinical context: sway-density versus other parameterization techniques. Mot Control 6(3):246–270CrossRefGoogle Scholar
  25. 25.
    Hesse S, Luecke D, Jahnke MT, Mauritz KH (1996) Gait function in spastic hemiparetic patients walking barefoot, with firm shoes, and with ankle-foot orthosis. Int J Rehabil Res 19(2):133–141CrossRefPubMedGoogle Scholar
  26. 26.
    Robain G, Valentini F, Renard-Deniel S, Chennevelle JM, Piera JB (2006) A baropodometric parameter to analyze the gait of hemiparetic patients: the path of center of pressure. Ann Readapt Med Phys 49(8):609–613. CrossRefPubMedGoogle Scholar
  27. 27.
    Catena RD, van Donkelaar P, Chou LS (2007) Cognitive task effects on gait stability following concussion. Exp Brain Res 176(1):23–31. CrossRefPubMedGoogle Scholar
  28. 28.
    Luximon Y, Cong Y, Luximon A, Zhang M (2015) Effects of heel base size, walking speed, and slope angle on center of pressure trajectory and plantar pressure when wearing high-heeled shoes. Hum Mov Sci 41:307–319. CrossRefPubMedGoogle Scholar
  29. 29.
    Rosenbaum D, Lubke B, Bauer G, Claes L (1995) Long-term effects of hindfoot fractures evaluated by means of plantar pressure analyses. Clin Biomech 10(7):345–351CrossRefGoogle Scholar
  30. 30.
    Pozo JL, Kirwan EO, Jackson AM (1984) The long-term results of conservative management of severely displaced fractures of the calcaneus. J Bone Joint Surg Br Vol 66(3):386–390CrossRefGoogle Scholar
  31. 31.
    Prada-Canizares A, Aunon-Martin I, Vila YRJ, Pretell-Mazzini J (2016) Subtalar dislocation: management and prognosis for an uncommon orthopaedic condition. Int Orthop 40(5):999–1007. CrossRefPubMedGoogle Scholar
  32. 32.
    Spaulding SJ (2008) Basic biomechanics. In: Jacobs K (ed) Ergonomics for therapists. Elsevier, St. Louis, p 460 Google Scholar
  33. 33.
    Winstein CJ, Pohl PS, Cardinale C, Green A, Scholtz L, Waters CS (1996) Learning a partial-weight-bearing skill: effectiveness of two forms of feedback. Phys Ther 76(9):985–993CrossRefPubMedGoogle Scholar
  34. 34.
    Wall C 3rd, Wrisley DM, Statler KD (2009) Vibrotactile tilt feedback improves dynamic gait index: a fall risk indicator in older adults. Gait Posture 30(1):16–21. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wheeler JW, Shull PB, Besier TF (2011) Real-time knee adduction moment feedback for gait retraining through visual and tactile displays. J Biomech Eng 133(4):041007. CrossRefPubMedGoogle Scholar
  36. 36.
    Deleanu B, Prejbeanu R, Crisan D, Predescu V, Popa I, Poenaru DV (2015) Gait characteristics before hardware removal in patients operated upon for tibial plateau fractures. Int Orthop 39(7):1411–1415. CrossRefPubMedGoogle Scholar
  37. 37.
    Braito M, Dammerer D, Kaufmann G, Fischler S, Carollo J, Reinthaler A, Huber D, Biedermann R (2014) Are our expectations bigger than the results we achieve? A comparative study analysing potential advantages of ankle arthroplasty over arthrodesis. Int Orthop 38(8):1647–1653. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Court-Brown CM, Caesar B (2006) Epidemiology of adult fractures: a review. Injury 37(8):691–697. CrossRefPubMedGoogle Scholar

Copyright information

© SICOT aisbl 2018

Authors and Affiliations

  • Benedikt J. Braun
    • 1
  • Patrick Pelz
    • 1
  • Nils T. Veith
    • 1
  • Mika Rollmann
    • 1
  • Moritz Klein
    • 1
  • Steven C. Herath
    • 1
  • Jörg H. Holstein
    • 1
  • Tim Pohlemann
    • 1
  1. 1.Department of Trauma, Hand and Reconstructive SurgerySaarland University HospitalHomburgGermany

Personalised recommendations