Advertisement

International Orthopaedics

, Volume 42, Issue 6, pp 1387–1395 | Cite as

Three-dimensional navigation-guided percutaneous screw fixation for nondisplaced and displaced pelvi-acetabular fractures in a major trauma centre

  • King Him Chui
  • Chi Chiu Dennis Chan
  • Ka Chun Ip
  • Kin Bong Lee
  • Wilson Li
Original Paper

Abstract

Background

Navigation assisted minimally invasive percutaneous screw fixation (MIS) for pelvi-acetabular fracture was recently advocated.

Methods

We report 38 consecutive cases of pelvi-acetabular fractures treated with 3D navigation-guided MIS from 2015 to 2016. Ohe hundred and forty-three screws were inserted (59 sacroiliac, 45 retrograde anterior column, 34 supra-acetabular, three antegrade posterior-column and two subcristal). Navigation planning was mainly performed pre-operatively.

Results

The mean operative blood loss and time was 179 ml and 141 mins, respectively. The distance (deviation) between the planned and executed screw entry and tip measured by the navigation computer were 1.91 and 1.94 mm, respectively. There were no immediate or early surgical complications. Patients were followed for at least 6 month; 79% had fracture healing at 4.3 months on average, and 53% walked unaided by the six month follow-up. The average visual analogue scale for pain was 2.69.

Conclusion

We believe 3D navigation-guided MIS is a safe and effective surgical alternative in most pelvi-acetabular fractures.

Keywords

3D-navigation MIS Pelvic fracture Acetabular fracture Pelvi-acetabular fracture 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

264_2017_3659_MOESM1_ESM.pdf (3.2 mb)
ESM 1 (PDF 3321 kb)

References

  1. 1.
    Zwingmann J, Konrad G, Mehlhorn AT et al (2010) Percutaneous iliosacral screw insertion: malpositioning and revision rate of screws with regards to application technique (navigated vs. conventional). J Trauma 69:1501–1506CrossRefPubMedGoogle Scholar
  2. 2.
    Gras F, Marintschev I, Wilharm A, Klos K, Muckley T, Hofmann GO (2010) 2D-fluoroscopic navigated percutaneous screw fixation of pelvic ring injuries— a case series. BMC Musculoskelet Disord 11:153CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    James MLW, Sam B, Jielin Y et al (2015) Fluoroscopically assisted computer navigation enables accurate percutaneous screw placement for pelvic and acetabular fracture fixation. Injury, Int J Care Injured 46:1064–1068CrossRefGoogle Scholar
  4. 4.
    Behrendt D, Mütze M, Steinke H, Koestler M, Josten C, Böhme J (2012) Evaluation of 2D and 3D navigation for iliosacral screw fixation. Int J CARS 7:249–255CrossRefGoogle Scholar
  5. 5.
    Amir M, David K, Christian K et al (2014) Three-Dimensional Navigation Is More Accurate than Two-Dimensional Navigation or Conventional Fluoroscopy for Percutaneous Sacroiliac Screw Fixation in the Dysmorphic Sacrum: A Randomized Multicenter Study. J Orthop Trauma 28:707–710CrossRefGoogle Scholar
  6. 6.
    Ip KC, Lee KB (2014) Standardised multidisciplinary protocol for haemodynamically unstable pelvic fractures. J Orthop Surg 22(2):177–180CrossRefGoogle Scholar
  7. 7.
    Cheng M, Cheung MT, Lee KY, Lee KB et al (2015) Improvement in institutional protocols leads to decreased mortality in patients with haemodynamically unstable pelvic fractures. Emerg Med J 32(3):214–220.  https://doi.org/10.1136/emermed-2012-202009 CrossRefPubMedGoogle Scholar
  8. 8.
    Lau J, Chui KH, Ip KC, Lee KB et al (2016) Improved Survival with a Standardized Multidisciplinary 3-in-1 Pelvic Damage Control Protocol for Hemodynamically Unstable Pelvic Fracture. J Emerg Trauma Care 1:1CrossRefGoogle Scholar
  9. 9.
    Tai DKC et al (2011) Retroperitoneal Pelvic Packing in the Management of Hemodynamically Unstable Pelvic Fractures: A Level I Trauma Center Experience. J Trauma 71(4):E79–E86.  https://doi.org/10.1097/TA.0b013e31820cede0 CrossRefPubMedGoogle Scholar
  10. 10.
    Attias N, Lindsey RW, Starr AJ, Borer D, Bridges K, Hipp JA (2005) The use of a virtual three-dimensional model to evaluate the intraosseous space available for percutaneous screw fixation of acetabular fractures. J Bone Jt Surg Br 87:1520–1523CrossRefGoogle Scholar
  11. 11.
    Chen KN, Wang G, Cao LG, Zhang MC (2009) Differences of percutaneous retrograde screw fixation of anterior column acetabular fractures between male and female: a study of 164 virtual three- dimensional models. Injury 40:1067–1072CrossRefPubMedGoogle Scholar
  12. 12.
    Feng XR, Fang JT, Lin C et al (2015) Axial perspective to find the largest intraosseous space available for percutaneous screw fixation of fractures of the acetabular anterior column. Int J CARS 10:1347–1353.  https://doi.org/10.1007/s11548-015-1149-6 CrossRefGoogle Scholar
  13. 13.
    Gardner MJ, Morshed S, Nork SE et al (2010) Quantification of the upper and second sacral segment safe zones in normal and dysmorphic sacra. J Orthop Trauma 24:622–629CrossRefPubMedGoogle Scholar
  14. 14.
    Templeman D, Schmidt A, Freese J et al (1996) Proximity of iliosacral screws to neurovascular structures after internal fixation. Clin Orthop Relat Res:194–198Google Scholar
  15. 15.
    Chen H, Tang P, Yao Y, She F, Wang Y (2015) Anatomical study of anterior column screw tunnels through virtual three-dimensional models of the pelvis. Eur J Orthop Surg Traumatol 25:105–110CrossRefPubMedGoogle Scholar
  16. 16.
    Gras F et al (2012) Screw- versus plate-fixation strength of acetabular anterior column fractures: A biomechanical study. J Trauma Acute Care Surg 72:6.  https://doi.org/10.1097/TA.0b013e3182463b45 CrossRefGoogle Scholar
  17. 17.
    Kraemer W, Hearn T, Tile M, Powell J (1994) The effect of thread length and location on extraction strengths of iliosacral lag screws. Injury 25:5Y9CrossRefGoogle Scholar
  18. 18.
    Müller F, Füchtmeier B (2013) Percutaneous cement-augmented screw fixation of bilateral osteoporotic sacral fracture. Unfallchirurg 116(10):950–954.  https://doi.org/10.1007/s00113-013-2387-0 CrossRefPubMedGoogle Scholar
  19. 19.
    Arand M, Kinzl L, Gebhard F (2004) Computer-guidance in percutaneous screw stabilization of the iliosacral joint. Clin Orthop Relat Res 422:201–207CrossRefGoogle Scholar
  20. 20.
    Dirhold BM et al (2012) Current state of computer-assisted trauma surgery. Curr Rev Musculoskelet Med 5:184–191.  https://doi.org/10.1007/s12178-012-9133-z CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Grossterlinden L, Nuechtern J, Begemann PG et al (2011) Computer-assisted surgery and intraoperative three-dimensional imaging for screw placement in different pelvic regions. J Trauma 71:926–932CrossRefPubMedGoogle Scholar
  22. 22.
    Konrad G, Zwingmann J, Kotter E, Sudkamp N, Oberst M (2010) Variability of the screw position after 3D-navigated sacroiliac screw fixation. Influence of the surgeon’s experience with the navigation technique. Unfallchirurg 113(1):29–35CrossRefPubMedGoogle Scholar
  23. 23.
    Wang H, Wang F, Leong APY et al (2016) International Orthopaedics (SICOT) 40:1941.  https://doi.org/10.1007/s00264-015-3028-8 CrossRefGoogle Scholar
  24. 24.
    Manganaro MS et al (2017) Creating Three-dimensional Printed Models of Acetabular Fractures for Use as Educational Tools. Radiographics 37:871–880CrossRefPubMedGoogle Scholar
  25. 25.
    Leung KS, Tang N, Cheung WH, Ng WK (2008) Robotic arm in orthopaedic trauma surgery–early clinical experience and a review. Punjab J Orthop 10:5–9Google Scholar

Copyright information

© SICOT aisbl 2017

Authors and Affiliations

  1. 1.Department of Orthopaedics and TraumatologyQueen Elizabeth HospitalKowloonHong Kong

Personalised recommendations