Skip to main content

Advertisement

Log in

A systematic review of the clinical applications and complications of bone marrow aspirate concentrate in management of bone defects and nonunions

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Fracture healing encompasses a succession of dynamic multifactorial metabolic events, which ultimately re-establishes the integrity of the biomechanical properties of the bone. Up to 10% of the fractures occurring annually will need additional surgical procedures because of impaired healing. The aim of this article is to review the current literature regarding the use of bone marrow aspirate concentrate (BMAC) and its effectiveness in the management of bone defects.

Methods

We have included all published clinical literature investigating the development, techniques and applications of BMAC. Language, design and risk of bias did not deter the initial inclusion of any study. Our search was exclusively limited to studies involving human subjects. A PRISMA compliant search was carried out as published in 2009. This included the online databases: PubMed, EMBASE, clinical trial.gov and the Cochrane library from 1960 to the end of May 2015. MeSH terms used included: “Bone” AND “Marrow” AND “Aspirate” AND “Concentrate” AND “Bone Defects” AND “NONUNION”. Eligible studies were independently appraised by two authors using the Critical Appraisal Skills Program checklist. For the purpose of narrative review, relevant studies were included irrespective of methodology or level of evidence.

Results

Thirty-four of the 103 (48 PubMed and 55 EMBASE) results yielded by the preliminary search were included. Exclusions included three duplicate records, six letters, 17 non-orthopaedics related studies and four records irrelevant to our search topic. The CASP appraisal confirmed a satisfactory standard of 31 studies. They all had clearly defined objectives, were well designed and conducted appropriately to meet them. The published studies reported the use of BMAC in non-union and fracture healing (15 studies), bone defects (nine studies), spine fusion (two studies), distraction osteogensis (two studies) and complications related to the use of BMAC (seven studies).

Conclusions

Stem cells found in BMAC have the potential to self-renew, undertake clonal expansion and differentiate into different musculoskeletal tissues. The commercial processing of BMAC needs to be optimized in order to achieve a consistent end product, which will provide predicable and translatable results. The future potential of cell characterization in order to determine the optimum cell for repair/regeneration of bone also needs to be explored.

Level of Evidence: Systematic Review of minimum level IV studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Einhorn TA (1995) Enhancement of fracture-healing. J Bone Joint Surg Am 77(6):940–956

    Article  CAS  PubMed  Google Scholar 

  2. Einhorn TA (1996) Enhancement of fracture healing. Instr Course Lect 45:401–416

    CAS  PubMed  Google Scholar 

  3. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 355(Suppl):S7–21

    Article  Google Scholar 

  4. Health Quality Ontario (2005) Osteogenic protein-1 for long bone nonunion: an evidence-based analysis. Ont Health Technol Assess Ser 5(6):1–57

    Google Scholar 

  5. Emara KM, Diab RA, Emara AK (2015) Recent biological trends in management of fracture non-union. World J Orthop 6(8):623–628. doi:10.5312/wjo.v6.i8.623

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hannouche D, Petite H, Sedel L (2001) Current trends in the enhancement of fracture healing. J Bone Joint Surg Br 83(2):157–164

    Article  CAS  PubMed  Google Scholar 

  7. Perren SM (2014) Fracture healing: fracture healing understood as the result of a fascinating cascade of physical and biological interactions. Part I. An attempt to integrate observations from 30 years AO research. Acta Chir Orthop Traumatol Cechoslov 81(6):355–364

    CAS  Google Scholar 

  8. Carofino BC, Lieberman JR (2008) Gene therapy applications for fracture-healing. J Bone Joint Surg Am 90(Suppl 1):99–110. doi:10.2106/JBJS.G.01546

    Article  PubMed  Google Scholar 

  9. Stevenson S (1998) Enhancement of fracture healing with autogenous and allogeneic bone grafts. Clin Orthop Relat Res 355(Suppl):S239–S246

    Article  Google Scholar 

  10. Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8(3):301–316

    Article  CAS  PubMed  Google Scholar 

  11. Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA (2009) Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med 37(11):2126–2133. doi:10.1177/0363546509339582

    Article  PubMed  Google Scholar 

  12. Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38(6):1110–1116. doi:10.1177/0363546509359067

    Article  PubMed  Google Scholar 

  13. Imam MA, Mahmoud SSS, Holton J, Abouelmaati D, Elsherbini Y, Snow M (2017) A systematic review of the concept and clinical applications of bone marrow aspirate concentrate in orthopaedics. SICOT-J 3:17

    Article  Google Scholar 

  14. Xie A, Nie L, Shen G, Cui Z, Xu P, Ge H, Tan Q (2014) The application of autologous plateletrich plasma gel in cartilage regeneration. Mol Med Rep 10(3):1642–1648. doi:10.3892/mmr.2014.2358

    Article  CAS  PubMed  Google Scholar 

  15. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176(1):57–66. doi:10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  16. Hernigou P, Poignard A, Manicom O, Mathieu G, Rouard H (2005) The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg Br Vol 87(7):896–902. doi:10.1302/0301-620X.87B7.16289

    Article  CAS  Google Scholar 

  17. Kassem MS (2013) Percutaneous autogenous bone marrow injection for delayed union or non union of fractures after internal fixation. Acta Orthop Belg 79(6):711–717

    PubMed  Google Scholar 

  18. Nathan ST, Fisher BE, Roberts CS, Giannoudis PV (2011) The management of nonunion and delayed union of patella fractures: a systematic review of the literature. Int Orthop 35(6):791–795. doi:10.1007/s00264-010-1105-6

    Article  PubMed  Google Scholar 

  19. Lee DH, Ryu KJ, Kim JW, Kang KC, Choi YR (2014) Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res 472(12):3789–3797. doi:10.1007/s11999-014-3548-3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jager M, Jelinek EM, Wess KM, Scharfstadt A, Jacobson M, Kevy SV, Krauspe R (2009) Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther 4(1):34–43

    Article  PubMed  Google Scholar 

  21. Muschler GF, Nitto H, Matsukura Y, Boehm C, Valdevit A, Kambic H, Davros W, Powell K, Easley K (2003) Spine fusion using cell matrix composites enriched in bone marrow-derived cells. Clin Orthop Relat Res 407:102–118

    Article  Google Scholar 

  22. McCarrel T, Fortier L (2009) Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J Orthop Res 27(8):1033–1042. doi:10.1002/jor.20853

    Article  CAS  PubMed  Google Scholar 

  23. Wilkins RM, Kelly CM (2003) The effect of allomatrix injectable putty on the outcome of long bone applications. Orthopedics 26(5 Suppl):s567–s570

    PubMed  Google Scholar 

  24. Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, Stokol T, Cheetham J, Nixon AJ (2010) Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am 92(10):1927–1937. doi:10.2106/JBJS.I.01284

    Article  PubMed  Google Scholar 

  25. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012. doi:10.1016/j.jclinepi.2009.06.005

    Article  PubMed  Google Scholar 

  26. Hyde M, Higgs P, Wiggins RD, Blane D (2015) A decade of research using the CASP scale: key findings and future directions. Aging Ment Health 19(7):571–575. doi:10.1080/13607863.2015.1018868

    Article  CAS  PubMed  Google Scholar 

  27. Goel A, Sangwan SS, Siwach RC, Ali AM (2005) Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 36(1):203–206. doi:10.1016/j.injury.2004.01.009

    Article  PubMed  Google Scholar 

  28. Siwach RC, Sangwan SS, Singh R, Goel A (2001) Role of percutaneous bone marrow grafting in delayed unions, non-unions and poor regenerates. Indian J Med Sci 55(6):326–336

    CAS  PubMed  Google Scholar 

  29. Matsuda Y, Sakayama K, Okumura H, Kawatani Y, Mashima N, Shibata T (1998) Percutaneous autologous bone marrow transplantation for nonunion of the femur. Nihon Geka Hokan 67(1):10–17

    CAS  PubMed  Google Scholar 

  30. Garg NK, Gaur S, Sharma S (1993) Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture. Acta Orthop Scand 64(6):671–672

    Article  CAS  PubMed  Google Scholar 

  31. Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H (2006) Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg Am 88(Suppl 1 Pt 2):322–327. doi:10.2106/JBJS.F.00203

    Article  PubMed  Google Scholar 

  32. Desai P, Hasan SM, Zambrana L, Hegde V, Saleh A, Cohn MR, Lane JM (2015) Bone mesenchymal stem cells with growth factors successfully treat nonunions and delayed unions. HSS J 11(2):104–111. doi:10.1007/s11420-015-9432-1

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hernigou P, Guissou I, Homma Y, Poignard A, Chevallier N, Rouard H, Flouzat Lachaniette CH (2015) Percutaneous injection of bone marrow mesenchymal stem cells for ankle non-unions decreases complications in patients with diabetes. Int Orthop. doi:10.1007/s00264-015-2738-2

  34. Akcay S, Kazimoglu C (2014) Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res 472(7):2301–2302. doi:10.1007/s11999-014-3637-3

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hernigou P, Beaujean F (2002) Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res 405:14–23

    Article  Google Scholar 

  36. Jager M, Herten M, Fochtmann U, Fischer J, Hernigou P, Zilkens C, Hendrich C, Krauspe R (2011) Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res 29(2):173–180. doi:10.1002/jor.21230

    Article  PubMed  Google Scholar 

  37. Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437. doi:10.2106/JBJS.D.02215

    PubMed  Google Scholar 

  38. Petri M, Namazian A, Wilke F, Ettinger M, Stubig T, Brand S, Bengel F, Krettek C, Berding G, Jagodzinski M (2013) Repair of segmental long-bone defects by stem cell concentrate augmented scaffolds: a clinical and positron emission tomography--computed tomography analysis. Int Orthop 37(11):2231–2237. doi:10.1007/s00264-013-2087-y

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sauerbier S, Rickert D, Gutwald R, Nagursky H, Oshima T, Xavier SP, Christmann J, Kurz P, Menne D, Vissink A, Raghoebar G, Schmelzeisen R, Wagner W, Koch FP (2011) Bone marrow concentrate and bovine bone mineral for sinus floor augmentation: a controlled, randomized, single-blinded clinical and histological trial--per-protocol analysis. Tissue Eng A 17(17–18):2187–2197. doi:10.1089/ten.TEA.2010.0516

    Article  CAS  Google Scholar 

  40. Rickert D, Sauerbier S, Nagursky H, Menne D, Vissink A, Raghoebar GM (2011) Maxillary sinus floor elevation with bovine bone mineral combined with either autogenous bone or autogenous stem cells: a prospective randomized clinical trial. Clin Oral Implants Res 22(3):251–258. doi:10.1111/j.1600-0501.2010.01981.x

    Article  CAS  PubMed  Google Scholar 

  41. Kitoh H, Kitakoji T, Tsuchiya H, Mitsuyama H, Nakamura H, Katoh M, Ishiguro N (2004) Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis--a preliminary result of three cases. Bone 35(4):892–898. doi:10.1016/j.bone.2004.06.013

    Article  PubMed  Google Scholar 

  42. Hendrich C, Franz E, Waertel G, Krebs R, Jager M (2009) Safety of autologous bone marrow aspiration concentrate transplantation: initial experiences in 101 patients. Orthop Rev 1(2):e32. doi:10.4081/or.2009.e32

    Article  Google Scholar 

  43. Donaldson S, Chundamala J, Yandow S, Wright JG (2010) Treatment for unicameral bone cysts in long bones: an evidence based review. Orthop Rev 2(1):e13. doi:10.4081/or.2010.e13

    Article  Google Scholar 

  44. Di Bella C, Dozza B, Frisoni T, Cevolani L, Donati D (2010) Injection of demineralized bone matrix with bone marrow concentrate improves healing in unicameral bone cyst. Clin Orthop Relat Res 468(11):3047–3055. doi:10.1007/s11999-010-1430-5

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J (2008) The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 29(29):3973–3982. doi:10.1016/j.biomaterials.2008.06.026

    Article  CAS  PubMed  Google Scholar 

  46. Bain BJ (2005) Bone marrow biopsy morbidity: review of 2003. J Clin Pathol 58(4):406–408. doi:10.1136/jcp.2004.022178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burkle CM, Harrison BA, Koenig LF, Decker PA, Warner DO, Gastineau DA (2004) Morbidity and mortality of deep sedation in outpatient bone marrow biopsy. Am J Hematol 77(3):250–256. doi:10.1002/ajh.20185

    Article  PubMed  Google Scholar 

  48. Bain BJ (2004) Bone marrow biopsy morbidity and mortality: 2002 data. Clin Lab Haematol 26(5):315–318. doi:10.1111/j.1365-2257.2004.00630.x

    Article  CAS  PubMed  Google Scholar 

  49. Bain BJ (2003) Bone marrow biopsy morbidity and mortality. Br J Haematol 121(6):949–951

    Article  PubMed  Google Scholar 

  50. Hernigou J, Picard L, Alves A, Silvera J, Homma Y, Hernigou P (2014) Understanding bone safety zones during bone marrow aspiration from the iliac crest: the sector rule. Int Orthop 38(11):2377–2384. doi:10.1007/s00264-014-2343-9

    Article  PubMed  Google Scholar 

  51. Husebye EE, Lyberg T, Roise O (2006) Bone marrow fat in the circulation: clinical entities and pathophysiological mechanisms. Injury 37(Suppl 4):S8–18. doi:10.1016/j.injury.2006.08.036

    Article  PubMed  Google Scholar 

  52. Orlowski JP, Julius CJ, Petras RE, Porembka DT, Gallagher JM (1989) The safety of intraosseous infusions: risks of fat and bone marrow emboli to the lungs. Ann Emerg Med 18(10):1062–1067

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of library staff of Royal Orthopaedic NHS Foundation Trust, UK.

Funding

Self-funded.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceptualized the study and participated in study screening, selection, data extraction and manuscript preparation. All authors provided intellectual content and approved the manuscript for publication.

Corresponding author

Correspondence to Mohamed A. Imam.

Ethics declarations

Conflict of interest

NOne.

Additional information

The paper has not been submitted to any other journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imam, M.A., Holton, J., Ernstbrunner, L. et al. A systematic review of the clinical applications and complications of bone marrow aspirate concentrate in management of bone defects and nonunions. International Orthopaedics (SICOT) 41, 2213–2220 (2017). https://doi.org/10.1007/s00264-017-3597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-017-3597-9

Keywords

Navigation