Skip to main content

Advertisement

Log in

Screw-blade fixation systems in Pauwels three femoral neck fractures: a biomechanical evaluation

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Objectives

To reduce mechanical complications after osteosynthesis of femoral neck fractures, improved fixation techniques have been developed including blade or screw–anchor devices. This biomechanical study compares different fixation systems used for treatment of unstable femoral neck fractures with evaluation of failure mode, load to failure, stiffness, femoral head rotation, femoral neck shortening and femoral head migration.

Methods

Standardized Pauwels type 3 fractures (AO/OTA 31-B2) with comminution were created in 18 biomechanical sawbones using a custom-made sawguide. Fractures were stabilized using either SHS-Screw, SHS-Blade or Rotationally Stable Screw-Anchor (RoSA). Femurs were positioned in 25 degrees adduction and ten degrees posterior flexion and were cyclically loaded with an axial sinusoidal loading pattern of 0.5 Hz, starting with 300 N, with an increase by 300 N every 2000 cycles until bone–implant failure occurred.

Results

Mean failure load for the Screw-Anchor fixation (RoSA) was 5100 N (IQR 750 N), 3900 N (IQR 75 N) for SHS-Blade and 3000 N (IQR 675 N; p = 0.002) for SHS-Screw. For SHS-Screw and SHS-Blade we observed fracture displacement with consecutive fracture collapse as the main reason for failure, whereas RoSA mainly showed a cut-out under high loadings. Mean stiffness at 1800 N was 826 (IQR 431) N/mm for SHS-Screw, 1328 (IQR 441) N/mm for SHS-Blade and 1953 (IQR 617) N/mm for RoSA (p = 0.003). With a load of 1800 N (SHS-Screw 12° vs. SHS-Blade 7° vs. RoSA 2°; p = 0.003) and with 2700 N (24° vs. 15° vs. 3°; p = 0.002) the RoSA implants demonstrated a higher rotational stability and had the lowest femoral neck shortening (p = 0.002), compared with the SHS groups. At the 2700 N load point, RoSA systems showed a lower axial (p = 0.019) and cranial (p = 0.031) femoral head migration compared to the SHS-Screw.

Conclusions

In our study, the new Screw-Anchor fixation (RoSA) was superior to the comparable SHS implants regarding rotational stability and femoral neck shortening. Failure load, stiffness, femoral head migration, and resistance to fracture displacement were in RoSA implants higher than in SHS-Screws, but without significance in comparison to SHS-Blades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zielinski SM, Meeuwis MA, Heetveld MJ, Verhofstad MH, Roukema GR, Patka P, Van Lieshout EM, Dutch femoral neck fracture investigator group (2013) Adherence to a femoral neck fracture treatment guideline. Int Orthop 37(7):1327–1334

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siavashi B, Aalirezaei A, Moosavi M, Golbakhsh MR, Savadkoohi D, Zehtab MJ (2015) A comparative study between multiple cannulated screws and dynamic hip screw for fixation of femoral neck fracture in adults. Int Orthop 39(10):2069–2071

    Article  PubMed  Google Scholar 

  3. Yih-Shiunn L, Chien-Rae H, Wen-Yun L (2007) Surgical treatment of undisplaced femoral neck fractures in the elderly. Int Orthop 31(5):677–682

    Article  PubMed  Google Scholar 

  4. Kain MS, Marcantonio AJ, Iorio R (2014) Revision surgery occurs frequently after percutaneous fixation of stable femoral neck fractures in elderly patients. Clin Orthop Relat Res 472(12):4010–4014

    Article  PubMed  PubMed Central  Google Scholar 

  5. Keating JF, Grant A, Masson M, Scott NW, Forbes JF (2006) Randomized comparison of reduction and fixation, bipolar hemiarthroplasty, and total hip arthroplasty. Treatment of displaced intracapsular hip fractures in healthy older patients. J Bone Joint Surg Am 88(2):249–260

    Article  CAS  PubMed  Google Scholar 

  6. Massoud EI (2010) Fixation of basicervical and related fractures. Int Orthop 34(4):577–582

    Article  PubMed  Google Scholar 

  7. Windolf M, Braunstein V, Dutoit C, Schwieger K (2009) Is a helical shaped implant a superior alternative to the dynamic hip screw for unstable femoral neck fractures? A biomechanical investigation. Clin Biomech (Bristol, Avon) 24:59–64

    Article  Google Scholar 

  8. Lenich A, Bachmeier S, Prantl L, Nerlich M, Hammer J, Mayr E, Al-Munajjed AA, Füchtmeier B (2011) Is the rotation of the femoral head a potential initiation for cutting out? A theoretical and experimental approach. BMC Musculoskelet Disord 12:79

    Article  PubMed  PubMed Central  Google Scholar 

  9. O’Neill F, Condon F, McGloughlin T, Lenehan B, Coffey JC, Walsh M (2011) Dynamic hip screw versus DHS blade: a biomechanical comparison of the fixation achieved by each implant in bone. J Bone Joint Surg (Br) 93(5):616–621

    Article  Google Scholar 

  10. Frei HC, Hotz T, Cadosch D, Rudin M, Käch K (2012) Central head perforation, or "cut through," caused by the helical blade of the proximal femoral nail antirotation. J Orthop Trauma 26(8):e102–e107

    Article  PubMed  Google Scholar 

  11. Knobe M, Gradl G, Maier KJ, Drescher W, Jansen-Troy A, Prescher A, Knechtel T, Antony P, Pape HC (2013) Rotationally stable screw-anchor versus sliding hip screw plate systems in stable trochanteric femur fractures: a biomechanical evaluation. J Orthop Trauma 27(6):e127–e136

    Article  PubMed  Google Scholar 

  12. Knobe M, Nagel P, Maier KJ, Gradl G, Buecking B, Sönmez TT, Modabber A, Prescher A, Pape HC (2016) Rotationally stable screw-anchor with locked trochanteric stabilizing plate versus proximal femoral nail Antirotation in the treatment of AO/OTA 31A2.2 fracture: a biomechanical evaluation. J Orthop Trauma 30(1):e12–e18

    Article  PubMed  Google Scholar 

  13. Baumgaertner M, Curtin S, Lindskog D, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of pertrochanteric fractures of the hip. J Bone Joint Surg Am 77:1058–1056

    Article  CAS  PubMed  Google Scholar 

  14. Bong MR, Patel V, Iesaka K, Egol KA, Kummer FJ, Koval KJ (2004) Comparison of a sliding hip screw with a trochanteric lateral stabilizing plate to an intramedullary hip screw for fixation of unstable intertrochanteric hip fractures: a cadaver study. J Trauma 56:791–794

    Article  PubMed  Google Scholar 

  15. Ehmke LW, Fitzpatrick DC, Krieg JC, Madey SM, Bottlang M (2005) Lag screws for hip fracture fixation: evaluation of migration resistance under simulated walking. J Orthop Res 23(6):1329–1335

    Article  PubMed  Google Scholar 

  16. Haynes RC, Pöll RG, Miles AW, Weston RB (1997) Failure of femoral head fixation: a cadaveric analysis of lag screw cut-out with the gamma locking nail and AO dynamic hip screw. Injury 28(5–6):337–341

    Article  CAS  PubMed  Google Scholar 

  17. Kouvidis GK, Sommers MB, Giannoudis PV, Katonis PG, Bottlang M (2009) Comparison of migration behavior between single and dual lag screw implants for intertrochanteric fracture fixation. J Orthop Surg Res 4:16

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kubiak EN, Bong M, Park SS, Kummer F, Egol K, Koval KJ (2004) Intramedullary fixation of unstable intertrochanteric hip fractures: one or two lag screws. J Orthop Trauma 18(1):12–17

    Article  PubMed  Google Scholar 

  19. Luo Q, Yuen G, Lau TW, Yeung K, Leung F (2013) A biomechanical study comparing helical blade with screw Design for Sliding hip Fixations of unstable intertrochanteric fractures. Sci World J 2013:351936

    Google Scholar 

  20. Ropars M, Mitton D, Skalli W (2008) Minimally invasive screw plates for surgery of unstable intertrochanteric femoral fractures: a biomechanical comparative study. Clin Biomech (Bristol, Avon) 23:1012–1017

    Article  Google Scholar 

  21. Rupprecht M, Grossterlinden L, Sellenschloh K, Hoffmann M, Püschel K, Morlock M, Rueger JM, Lehmann W (2011) Internal fixation of femoral neck fractures with posterior comminution: a biomechanical comparison of DHS and Intertan nail. Int Orthop 35:1695–1701

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871

    Article  CAS  PubMed  Google Scholar 

  23. Palm H, Posner E, Ahler-Toftehøj HU, Siesing P, Gylvin S, Aasvang T, Holck K, Holtz KB (2013) High reliability of an algorithm for choice of implants in hip fracture patients. Int Orthop 37(6):1121–1126

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bhandari M, Devereaux PJ, Swiontkowski MF et al (2003) Internal fixation compared with arthroplasty for displaced fractures of the femoral neck. A meta-analysis. J Bone Joint Surg Am 85-A:1673–1681

    Article  PubMed  Google Scholar 

  25. Chammout GK, Mukka SS, Carlsson T et al (2012) Total hip replacement versus open reduction and internal fixation of displaced femoral neck fractures. J Bone Joint Surg Am 94:1921–1928

    Article  PubMed  Google Scholar 

  26. Eschler A, Brandt S, Gierer P et al (2014) Angular stable multiple screw fixation (Targon FN) versus standard SHS for the fixation of femoral neck fractures. Injury 45(Suppl 1):S76–S80

    Article  PubMed  Google Scholar 

  27. Knobe M, Pape HC (2016) Anchorage strategies in geriatric hip fractures. Innov Surg Sci 1(2):73–78

    Google Scholar 

  28. Parker MJ, Khan RJK, Crawford J et al (2002) Hemiarthroplasty versus internal fixation for displaced intracapsular hip fractures in the elderly. J Bone Joint Surg 84:1150–1155

    Article  CAS  Google Scholar 

  29. Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) Investigators (2017) Fracture fixation in the operative management of hip fractures (FAITH): an international, multicentre, randomised controlled trial. Lancet 389(10078):1519–1527

    Article  Google Scholar 

  30. Born CT, Karich B, Bauer C et al (2011) Hip screw migration testing: first results for hip screws and helical blades utilizing a new oscillating test method. J Orthop Res 29:760–766

    Article  PubMed  Google Scholar 

  31. Yang M, Chen J, Zhang D, Wang J, Yu K, Fu Z, Zhang H, Jiang B (2011) Biomechanical evaluation of a new device for internal fixation of femoral neck fractures. Artif Cells Blood Substit Immobil Biotechnol 39(4):252–258

    Article  PubMed  Google Scholar 

  32. Rupprecht M, Grossterlinden L, Ruecker AH, de Oliveira AN, Sellenschloh K, Nüchtern J, Püschel K, Morlock M, Rueger JM, Lehmann W (2011) A comparative biomechanical analysis of fixation devices for unstable femoral neck fractures: the Intertan versus cannulated screws or a dynamic hip screw. J Trauma 71(3):625–634

    Article  PubMed  Google Scholar 

  33. Nowotarski PJ, Ervin B, Weatherby B, Pettit J, Goulet R, Norris B (2012) Biomechanical analysis of a novel femoral neck locking plate for treatment of vertical shear Pauwel’s type C femoral neck fractures. Injury 43(6):802–806

    Article  PubMed  Google Scholar 

  34. Kunapuli SC, Schramski MJ, Lee AS, Popovich JM Jr, Cholewicki J, Reeves NP, Crichlow RJ (2015) Biomechanical analysis of augmented plate fixation for the treatment of vertical shear femoral neck fractures. J Orthop Trauma 29(3):144–150

    Article  PubMed  Google Scholar 

  35. Gotfried Y, Cohen B, Rotem A (2002) Biomechanical evaluation of the percutaneous compression plating system for hip fractures. J Orthop Trauma 16:644–650

    Article  PubMed  Google Scholar 

  36. Brandt E, Verdonschot N, van Vugt A, van Kampen A (2006) Biomechanical analysis of the percutaneous compression plate and sliding hip screw in intracapsular hip fractures: experimental assessment using synthetic and cadaver bones. Injury 37(10):979–983

    Article  PubMed  Google Scholar 

  37. Kold S, Rahbek O, Vestermark M, Overgaard S, Soballe K (2005) Bone compaction enhances fixation of weightbearing titanium implants. Clin Orthop Relat Res 431:138–144

    Article  Google Scholar 

  38. Wähnert D, Gudushauri P, Schiuma D, Richards G, Windolf M (2010) Does cancellous bone compaction due to insertion of a blade implant influence the cut-out resistance? A biomechanical study. Clin Biomech (Bristol, Avon) 25(10):1053–1057

    Article  Google Scholar 

  39. Maier KJ, Bücking B, Horst K, Andruszkow H, Hildebrand F, Knobe M (2016) The rotationally stable screw-anchor with trochanteric stabilizing plate (RoSA/TSP): first results in unstable trochanteric femur fractures. Unfallchirurg Oct 21. [Epub ahead of print]

  40. Krischak G, Dürselen L, Röderer G (2011) Treatment of peritrochanteric fractures: biomechanical considerations. Unfallchirurg 114:485–490

    Article  CAS  PubMed  Google Scholar 

  41. Basso T, Klaksvik J, Syversen U, Foss OA (2014) A biomechanical comparison of composite femurs and cadaver femurs used in experiments on operated hip fractures. J Biomech 47(16):3898–3902

    Article  PubMed  Google Scholar 

  42. Hoffmann S, Paetzold R, Stephan D, Püschel K, Buehren V, Augat P (2013) Biomechanical evaluation of interlocking lag screw design in intramedullary nailing of unstable pertrochanteric fractures. J Orthop Trauma 27(9):483–490

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank carpenters Mark Altgassen and Rudi Eigelshoven for design and construction of the sawguide and their assistance with creation of the osteotomy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Knobe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

Koenigsee Implants partially funded this study (student research assistant, sawbones).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Electronic supplementary material

ESM 1

(XLSX 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knobe, M., Altgassen, S., Maier, KJ. et al. Screw-blade fixation systems in Pauwels three femoral neck fractures: a biomechanical evaluation. International Orthopaedics (SICOT) 42, 409–418 (2018). https://doi.org/10.1007/s00264-017-3587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-017-3587-y

Keywords

Navigation