International Orthopaedics

, Volume 41, Issue 7, pp 1369–1377 | Cite as

Does low-constraint mobile bearing knee prosthesis give satisfactory results for severe coronal deformities? A five to twelve year follow up study

  • Jaroslaw Czekaj
  • Camdon Fary
  • Thierry Gaillard
  • Sebastien LustigEmail author
Original Paper



Severe varus and valgus knee deformities traditionally are replaced with constrained implants, with a number of disadvantages. We present our results in this challenging group using a low constraint deep-dish mobile bearing implant design.


One hundred fifty-four patients (170 arthroplasties) who underwent primary TKA using a deep-dish, mobile bearing posterior-stabilized implant for severe varus (HKA < 170°) or valgus (HKA > 190°) deformity between 2004 and 2009 were evaluated at a mean of 6.6 years post-operatively (minimum of 5 years).


Alignment improved from a pre-operative mean (±SD) varus deformity of 167.4° (±2.6°) and a mean (±SD) valgus deformity of 194.1° (±4.0°) to an overall mean (±SD) post-operative mechanical alignment of 178.6° (±3.2°). Twenty-three patients had post-operative varus alignment, five patients had post-operative valgus alignment and 134 knees were in neutral alignment (within 3° spread). Clinical scores at final follow-up were excellent (IKS score 93.8 (±7.4) and function score 82.4 (±20.2)). Three patients were re-operated upon: one deep infection, one periprosthetic fracture and one revision at 144 months for aseptic loosening of the femoral component. No patient was revised for instability or implant failure. The survival rate at five years was 99.4% and at ten years 98.6%.


Satisfactory outcomes can be achieved in patients with substantial varus or valgus deformities using low constraint deep-dish mobile bearing implant, standard approach and appropriate soft tissue releases.


LOW-constraint MOBILE bearing Severe coronal deformity Total knee arthroplasty 


Compliance with ethical standards

Conflict of interest

JC and RG declare that they have no conflict of interest.

TG: royalties from Amplitude ™.

SL: consultant for Smith & Nephew, consultant for Medacta, institutional research support to Tornier-Wright and Amplitude.


There is no funding source.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

For this type of study formal consent is not required.


  1. 1.
    Bruyere O, Ethgen O, Neuprez A et al (2012) Health-related quality of life after total knee or hip replacement for osteoarthritis: a 7-year prospective study. Arch Orthop Trauma Surg 132:1583–1587. doi: 10.1007/s00402-012-1583-7
  2. 2.
    Verdonk PCM, Pernin J, Pinaroli A et al (2009) Soft tissue balancing in varus total knee arthroplasty: an algorithmic approach. Knee Surg Sport Traumatol Arthrosc 17:660–666. doi: 10.1007/s00167-009-0755-7 CrossRefGoogle Scholar
  3. 3.
    Ranawat AS, Ranawat CS, Elkus M, Rasquinha VJ, Rossi RBS (2005) Total knee arthroplasty for severe valgus deformity. J Bone Joint Surg Am 87:271–84CrossRefPubMedGoogle Scholar
  4. 4.
    Nikolopoulos D, Michos I, Safos G, Safos P (2015) Current surgical strategies for total arthroplasty in valgus knee. World J Orthod 6:469–482. doi: 10.5312/wjo.v6.i6.469 Google Scholar
  5. 5.
    Girard J, Amzallag M, Pasquier G et al (2009) Total knee arthroplasty in valgus knees: predictive preoperative parameters influencing a constrained design selection. Orthop Traumatol Surg Res 95:260–266. doi: 10.1016/j.otsr.2009.04.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Nam D, Umunna BN, Cross MB et al (2012) Clinical results and failure mechanisms of a nonmodular constrained knee without stem extensions. HSS J 8:96–102. doi: 10.1007/s11420-012-9277-9 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Châtain F, Gaillard TH, Denjean S, Tayot O (2013) Outcomes of 447 SCORE ® highly congruent mobile-bearing total knee arthroplasties after 5–10 years follow-up. Orthop Traumatol Surg Res 99:681–686. doi: 10.1016/j.otsr.2013.05.003 CrossRefPubMedGoogle Scholar
  8. 8.
    Insall J, Dorr L, Scott R, Scott W (1989) Rationale of the knee society clinical rating system. Clin Orthop Relat Res 248:13–4Google Scholar
  9. 9.
    Ahlbäck S (1968) Osteoarthrosis of the knee. A radiographic investigation. Acta Radiol Diagn Suppl 277:7–72Google Scholar
  10. 10.
    (2015) A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https ://
  11. 11.
    Peters CL, Mulkey P, Pa-c JE et al (2014) Comparison of total knee arthroplasty with highly congruent anterior-stabilized bearings versus a cruciate-retaining design. Clin Orthop Relat Res 427:175–180. doi: 10.1007/s11999-013-3068-6 CrossRefGoogle Scholar
  12. 12.
    Fedida BA, Krief E, Havet E et al (2015) Cruciate-sacrificing total knee arthroplasty and insert design: a radiologic study of sagittal laxity. Orthop Traumatol Surg Res 101:941–945. doi: 10.1016/j.otsr.2015.07.024 CrossRefGoogle Scholar
  13. 13.
    Metsovitis S, Ploumis AL, Chantzidis PT et al (2011) Rotaglide total knee arthroplasty: a long-term follow-up study. J Bone Joint Surg Am 93:878–84CrossRefPubMedGoogle Scholar
  14. 14.
    Maynard LM, Sauber TJ, Kostopoulos VK et al (2014) Survival of primary condylar-constrained total knee arthroplasty at a minimum of 7 years. J Arthroplasty 29:1197–1201. doi: 10.1016/j.arth.2013.11.018 CrossRefPubMedGoogle Scholar
  15. 15.
    Lachiewicz PF, Soileau ES (2011) Results of a second-generation constrained condylar prosthesis in primary total knee arthroplasty. J Arthroplasty 26:1228–1231. doi: 10.1016/j.arth.2011.05.010 CrossRefPubMedGoogle Scholar
  16. 16.
    Bali K, Naudie DD, Howard JL et al (2016) Comparison of tibial insert polyethylene damage in rotating hinge and highly constrained total knee arthroplasty: a retrieval analysis. J Arthroplasty 31:290–294. doi: 10.1016/j.arth.2015.07.007 CrossRefPubMedGoogle Scholar
  17. 17.
    Rapuri VR, Clarke HD, Spangehl MJ, Beauchamp CP (2011) Case report five cases of failure of the tibial polyethylene insert locking mechanism in one design of constrained knee arthroplasty. J Arthroplasty 26:976.e21–976.e24. doi: 10.1016/j.arth.2010.07.013 CrossRefGoogle Scholar
  18. 18.
    Sculco TP (2006) The role of constraint in total knee arthoplasty. J Arthroplasty 21:54–56. doi: 10.1016/j.arth.2006.02.166 CrossRefPubMedGoogle Scholar
  19. 19.
    Insall JN, Binazzi R, Soudry M, Mestriner L (1985) Total knee arthroplasty. Clin Orthop Relat Res 192:13–22Google Scholar
  20. 20.
    Ha C, Park Y, Lee C et al (2016) Selective medial release technique using the pie-crusting method for medial tightness during primary total knee arthroplasty. J Arthroplasty 31:1005–1010. doi: 10.1016/j.arth.2015.11.019 CrossRefPubMedGoogle Scholar
  21. 21.
    Mehdikhani KG, Moreno BM, Reid JJ et al (2016) An algorithmic, pie-crusting medial soft tissue release reduces the need for constrained inserts patients with severe varus deformity undergoing total knee arthroplasty. J Arthroplasty 31:1465–1469. doi: 10.1016/j.arth.2016.01.006 CrossRefGoogle Scholar
  22. 22.
    Keblish PA (1991) The lateral approach to the valgus knee. Surgical technique and analysis of 53 cases with over two-year follow-up evaluation. Clin Orthop Relat Res 271:52–62Google Scholar
  23. 23.
    Mertl P, Jarde O, Blejwas DVP (1992) Lateral approach of the knee with tibial tubercle osteotomy for prosthetic surgery. Rev Chir Orthop Reparatrice Appar Mot 78:264–7PubMedGoogle Scholar
  24. 24.
    Gunst S, Villa V, Magnussen R et al (2016) Equivalent results of medial and lateral parapatellar approach for total knee arthroplasty in mild valgus deformities. Int Orthop 40:945–951. doi: 10.1007/s00264-015-2893-5 CrossRefPubMedGoogle Scholar
  25. 25.
    Sekiya H, Takatoku K, Takada H (2014) Lateral approach is advantageous in total knee arthroplasty for valgus deformed knee. Eur J Orthop Surg Traumatol 24:111–115. doi: 10.1007/s00590-012-1137-2 CrossRefPubMedGoogle Scholar
  26. 26.
    Matsumoto T, Muratsu H, Kawakami Y, Takayama K (2014) Soft-tissue balancing in total knee arthroplasty: and measured-resection versus gap technique. Int Orthop 38:531–537. doi: 10.1007/s00264-013-2133-9 CrossRefPubMedGoogle Scholar
  27. 27.
    De Muylder J, Victor J, Cornu O et al (2015) Total knee arthroplasty in patients with substantial deformities using primary knee components. Knee Surg Sport Traumatol Arthrosc 23:3653–3659. doi: 10.1007/s00167-014-3269-x CrossRefGoogle Scholar
  28. 28.
    Ritter MA, Faris GW, Faris PM, Davis KE (2004) Total knee arthroplasty in patients with angular varus or valgus deformities of >20 °. J Arthroplasty 19:862–866. doi: 10.1016/j.arth.2004.03.009 CrossRefPubMedGoogle Scholar
  29. 29.
    Koskinen E, Remes V, Paavolainen P et al (2011) The knee results of total knee replacement with a cruciate-retaining model for severe valgus deformity—a study of 48 patients followed for an average of 9 years. Knee 18:145–150. doi: 10.1016/j.knee.2010.04.001 CrossRefPubMedGoogle Scholar
  30. 30.
    Ahn JH, Lee SH, Kang HW (2016) Quantification of the effect of vertical bone resection of the medial proximal tibia for achieving soft tissue balancing in total knee arthroplasty. Clin Orthop Surg 8:49–56CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sorrells RB, Murphy JA, Sheridan KC, Wasielewski RC (2007) The effect of varus and valgus deformity on results of cementless mobile bearing TKA. Knee 14:284–288. doi: 10.1016/j.knee.2007.04.004 CrossRefPubMedGoogle Scholar

Copyright information

© SICOT aisbl 2017

Authors and Affiliations

  • Jaroslaw Czekaj
    • 1
  • Camdon Fary
    • 2
  • Thierry Gaillard
    • 3
  • Sebastien Lustig
    • 1
    Email author
  1. 1.Albert TRILLAT CenterLyon North University HospitalLyonFrance
  2. 2.Western Hospital and Epworth Musculoskeletal InstituteMelbourneAustralia
  3. 3.Centre de Chirurgie Orthopédique du BeaujolaisVillefranche-sur-SâoneFrance

Personalised recommendations