Skip to main content
Log in

Allografts supercharged with bone-marrow-derived mesenchymal stem cells possess equivalent osteogenic capacity to that of autograft: a study with long-term follow-ups of human biopsies

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Bone-marrow-derived mesenchymal stem cells (BM-MSCs) have been proposed to enhance bone formation in allografts. However, it is not known whether a combination of MSCs, contained in bone marrow concentrate (BMC) and structural allograft could be better than an allograft without MSCs and equivalent to a femoral head autograft in terms of histologic bone formation and long-term cellularity in the graft. After ten years of follow-up, three types of grafts: those initially loaded with BM-MSCs; dead, irradiated allografts; autografts.

Materials and methods

Twenty patients received acetabular grafting during hip surgery and subsequently underwent femoral hip revision eight to 13 years later (average 10 years). Revision surgery was for reasons other than graft failure. These 20 patients had received eight allografts initially loaded with BM-MSCs: six dead irradiated allografts and six autografts. The number of MSCs present in the three types of graft were evaluated at the time of initial surgery and at revision. New bone formation associated in the acetabular graft was assessed by histology and calculated as a percentage of total available bony area.

Results

At the most recent follow-ups (average 10 years), concentration of MSCs in allografts previously loaded with BM-MSCs was higher than that found in autografts. There were low or no MSCs found in uncharged allografts. New-bone-formation analysis showed that allografts loaded with BM-MSCs produced more new bone (35 %; range 20–50 %) compared with either uncharged allografts (9 %; range 2–15 %) or autografts (24 %; range 12–32 %).

Conclusions

Our observations with allografts charged with BM-MSCs provides evidence in support of a long-term benefit of supercharging bone allografts with autologous BM-MSCs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baba T, Shitoto K (2010) Revision of total hip arthroplasty using the Kerboull and KT plates. Int Orthop 34(3):341–347

    Article  PubMed  Google Scholar 

  2. Buckley SC, Stockley I, Hamer AJ, Kerry RM (2005) Irradiated allograft bone for acetabular revision surgery. Results at a mean of five years. J Bone Joint Surg Br 87(3):310–313

    Article  CAS  PubMed  Google Scholar 

  3. Deirmengian GK, Zmistowski B, O’Neil JT, Hozack WJ (2011) Management of acetabular bone loss in revision total hip arthroplasty. J Bone Joint Surg Am 93(19):1842–1852

    Article  PubMed  Google Scholar 

  4. Cabanela ME, Trousdale RT, Berry DJ (2003) Impacted cancellous graft plus cement in hip revision. Clin Orthop Relat Res 417:175–182

    Google Scholar 

  5. Pulido L, Rachala SR, Cabanela ME (2011) Cementless acetabular revision: past, present, and future. Revision total hip arthroplasty: the acetabular side using cementless implants. Int Orthop 35(2):289–298

    Article  PubMed  PubMed Central  Google Scholar 

  6. Robinson DE, Lee MB, Smith EJ, Learmonth ID (2002) Femoral impaction grafting in revision hip arthroplasty with irradiated bone. J Arthroplasty 17(7):834–840

    Article  CAS  PubMed  Google Scholar 

  7. Schreurs BW, Busch VJ, Welten ML et al (2004) Acetabular reconstruction with impaction bone-grafting and a cemented cup in patients younger than fifty years old. J Bone Joint Surg [Am] 86-A:2385–2392

    Article  Google Scholar 

  8. Van Haaren EH, Heyligers IC, Alexander FG, Wuisman PI (2007) High rate of failure of impaction grafting in large acetabular defects. J Bone Joint Surg Br 89(3):296–300

    Article  PubMed  Google Scholar 

  9. Kowalczewski JB, Rutkowska-Sak L, Marczak D, Słowińska I, Słowiński R, Sibiński M (2013) Bone graft incorporation after revision hip arthroplasty in patients with rheumatoid arthritis: seventy eight revisions using bone allografts with or without metal reinforcements. Int Orthop 37(4):595–598

    Article  PubMed  PubMed Central  Google Scholar 

  10. Linder L (2000) Cancellous impaction grafting in the human femur: histological and radiographic observations in 6 autopsy femurs and 8 biopsies. Acta Orthop Scand 71:543–552

    Article  CAS  PubMed  Google Scholar 

  11. Ling RE, Timperley AJ, Linder L (1993) Histology of cancellous impaction grafting in the femur. A case report. J Bone Joint Surg [Br] 75-B:693–696

    Google Scholar 

  12. Mikhail WEM, Weidenhielm LRA, Wretenberg P et al (1999) Femoral bone regeneration subsequent to impaction grafting during hip revision: histologic analysis of a human biopsy specimen. J Arthroplasty 14:849–853

    Article  CAS  PubMed  Google Scholar 

  13. Mazhar Tokgozoglu A, Aydin M, Atilla B et al (2000) Scintigraphic evaluation of impaction grafting for total hip arthroplasty revision. Arch Orthop Trauma Surg 120:416–419

    Article  CAS  PubMed  Google Scholar 

  14. Piert M, Winter E, Becker GA et al (1999) Allogenic bone graft viability after hip revision arthroplasty assessed by dynamic [18F] fluoride ion positron emission tomography. Eur J Nucl Med 26:615–624

    Article  CAS  PubMed  Google Scholar 

  15. Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217(2):318–324

    Article  CAS  PubMed  Google Scholar 

  16. Hernigou P, Pariat J, Queinnec S, Homma Y, Flouzat Lachaniette CH, Chevallier N, Rouard H (2014) Supercharging irradiated allografts with mesenchymal stem cells improves acetabular bone grafting in revision arthroplasty. Int Orthop 38(9):1913–1921

    Article  PubMed  Google Scholar 

  17. Homma Y, Kaneko K, Hernigou P (2014) Supercharging allografts with mesenchymal stem cells in the operating room during hip revision. Int Orthop 38(10):2033–2044

    Article  PubMed  Google Scholar 

  18. Ochs BG, Schmid U, Rieth J, Ateschrang A, Weise K, Ochs U (2008) Acetabular bone reconstruction in revision arthroplasty: a comparison of freeze-dried, irradiated and chemically-treated allograft vitalised with autologous marrow versus frozen non-irradiated allograft. J Bone Joint Surg Br 90(9):1164–1171

    Article  CAS  PubMed  Google Scholar 

  19. Paprosky WG, Perona PG, Lawrence JM (1994) Acetabular defect classification and surgical reconstruction in revision arthroplasty: a 6-year follow-up evaluation. J Arthroplasty 9:33–44

    Article  CAS  PubMed  Google Scholar 

  20. Choi HR, Anderson D, Foster S, Beal M, Lee JA, Barr C, Malchau H, McCarthy J, Kwon YM (2013) Acetabular cup positioning in revision total hip arthroplasty with Paprosky type III acetabular defects: Martell radiographic analysis. Int Orthop 37(10):1905–1910

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hernigou P, Delepine G, Goutallier D, Julieron A. (1993) Massive allografts sterilised by irradiation (clinical results). J. Bone and Joint Surg. (BR), 75 B, n° 6, 904–913

  22. Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H (2006) Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg Am 88(Suppl 1 Pt 2):322–327

    Article  PubMed  Google Scholar 

  23. Hernigou P, Homma Y, Flouzat Lachaniette CH, Poignard A, Allain J, Chevallier N, Rouard H (2013) Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop 37(11):2279–2287

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hisatome T, Yasunaga Y, Yanada S, Tabata Y, Ikada Y, Ochi M (2005) Neovascularization and bone regeneration by implantation of autologous bone marrow mononuclear cells. Biomaterials 26(22):4550–4556

    Article  CAS  PubMed  Google Scholar 

  25. Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87:1430–1437

    PubMed  Google Scholar 

  26. Jeffery M, Scott G, Freeman M (2003) Failure of an uncemented non-porous metal-backed prosthesis with augmentation using impacted allograft for acetabular revision 12- to 17-year results. J Bone Joint Surg Br 85(2):182–186

    Article  CAS  PubMed  Google Scholar 

  27. Kerboull M, Hamadouche M, Kerboull L (2000) The Kerboull acetabular reinforcement device in major acetabular reconstructions. Clin Orthop Relat Res 378:155–168

    Article  Google Scholar 

  28. Kinkel S, Thomsen MN, Nadorf J, Heisel C, Tanner MC, Jakubowitz E (2014) Strut grafts in revision hip arthroplasty faced with femoral bone defects: an experimental analysis. Int Orthop 38(6):1147–1153

    Article  PubMed  PubMed Central  Google Scholar 

  29. Garcia-Cimbrelo E, Cruz-Pardos A, Garcia-Rey E, Ortega-Chamarro J (2010) The survival and fate of acetabular reconstruction with impaction grafting for large defects. Clin Orthop Relat Res 468(12):3304–3313

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ullmark G, Obrant KJ (2002) Histology of impacted bone-graft incorporation. J Arthroplasty 17:150–157

    Article  CAS  PubMed  Google Scholar 

  31. Chevallier N, Anagnostou F, Zilber S, Bodivit G, Maurin S, Barrault A, Bierling P, Hernigou P, Layrolle P, Rouard H (2010) Osteoblastic differentiation of human mesenchymal stem cells with platelet lysate. Biomaterials 31(2):270–278

    Article  CAS  PubMed  Google Scholar 

  32. Coquelin L, Fialaire-Legendre A, Roux S, Poignard A, Bierling P, Hernigou P, Chevallier N, Rouard H (2012) In vivo and in vitro comparison of three different allografts vitalized with human mesenchymal stromal cells. Tissue Eng Part A 18(17–18):1921–1931

    Article  CAS  PubMed  Google Scholar 

  33. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  CAS  PubMed  Google Scholar 

  34. Kruyt MC, de Bruijn JD, Yuan H et al (2004) Optimization of bone tissue engineering in goats: a preoperative seeding method using cryopreserved cells and localized bone formation in calcium phosphate scaffolds. Transplantation 77:359–365

    Article  PubMed  Google Scholar 

  35. Kon E, Muraglia A, Corsi A et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337

    Article  CAS  PubMed  Google Scholar 

  36. Lebouvier A, Poignard A, Cavet M, Amiaud J, Leotot J, Hernigou P, Rahmouni A, Bierling P, Layrolle P, Rouard H, Chevallier N. (2015) Development of a simple procedure for the treatment of femoral head osteonecrosis with intra-osseous injection of bone marrow mesenchymal stromal cells: study of their biodistribution in the early time points after injection. Stem Cell Res Ther. Apr 13;6:68.

  37. Léotot J, Lebouvier A, Hernigou P, Bierling P, Rouard H, Chevallier N (2015) Bone-Forming Capacity and Biodistribution of Bone Marrow-Derived Stromal Cells Directly Loaded Into Scaffolds: A Novel and Easy Approach for Clinical Application of Bone Regeneration. Cell Transplant 24(10):1945–1955

    Article  PubMed  Google Scholar 

  38. Pecina M, Vukicevic S (2014) Tissue engineering and regenerative orthopaedics (TERO). Int Orthop 38(9):1757–1760

    Article  PubMed  Google Scholar 

  39. Mehendale S, Learmonth ID, Smith EJ, Nedungayil S, Maheshwari R, Hassaballa MA (2009) Use of irradiated bone graft for impaction grafting in acetabular revision surgery: a review of fifty consecutive cases. Hip Int 19(2):114–119

    PubMed  Google Scholar 

  40. Deakin DE, Bannister GC (2007) Graft incorporation after acetabular and femoral impaction grafting with washed irradiated allograft and autologous marrow. J Arthroplasty 22(1):89–94

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ted Sand and Richard Suzuki and the other members of Celling Biosciences for the review of the final manuscript and their help in translation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Hernigou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernigou, P., Dubory, A., Roubineau, F. et al. Allografts supercharged with bone-marrow-derived mesenchymal stem cells possess equivalent osteogenic capacity to that of autograft: a study with long-term follow-ups of human biopsies. International Orthopaedics (SICOT) 41, 127–132 (2017). https://doi.org/10.1007/s00264-016-3263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-016-3263-7

Keywords

Navigation