Skip to main content

Advertisement

Log in

A novel suture anchor constructed of cortical bone for rotator cuff repair: a biomechanical study on sheep humerus specimens

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate biomechanical properties of a new type of suture anchors constructed of human cortical allograft bone and compare it with the similar standard titanium screw anchor for rotator cuff tears in sheep humerus model.

Methods

Twenty-four paired sheep humeri were harvested from 12 male sheep aged 18 months. Specimens were divided into cortical bone anchor group and titanium screw anchor group. The anchors loaded with two sutures were placed at the footprint of infraspinatus tendon. Cyclic loading test was performed from 10 to 60 N at 1 Hz for 500 cycles and followed by a load-to-failure test at 33 mm/sec. A paired t-test was used to compare the biomechanical properties of the anchors of each type.

Results

No anchors failed during the cyclic phase, and the cortical bone anchors were all pulled out intact. The cyclic displacement of the cortical bone anchor was not significantly greater than that of the titanium screw anchor (P > 0.05). Student’s t test showed no statistically significant difference between anchors in terms of failure load (cortical bone anchor: 304.74 ± 64.46 N versus titanium screw anchor: 328.45 ± 89.58 N; P = 0.213), ultimate load (cortical bone anchor: 325.82 ± 76.45 N versus titanium screw anchor: 345.61 ± 83.56 N; P = 0.183), yield load (cortical bone anchor: 273.78 ± 44.75 N versus titanium screw anchor: 284.72 ± 56.37 N; P = 0.326) or stiffness (cortical bone anchor: 52.97 ± 14.28 N/mm versus titanium screw anchor: 62.38 ± 18.35 N/mm; P = 0.112).

Conclusions

In vitro, this experimental study suggested no statistically significant difference in initial fixation stability between the new type anchor and titanium screw anchor at a chosen level of significance (P < 0.05). The new type of suture anchor constructed of cortical bone provides comparable initial fixation strength to a similar metallic anchor for rotator cuff repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lorbach O, Baums MH, Kostuj T, Pauly S, Scheibel M, Carr A, Zargar N, Saccomanno MF, Milano G (2015) Advances in biology and mechanics of rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 23(2):530–541. doi:10.1007/s00167-014-3487-2

    Article  PubMed  Google Scholar 

  2. Denard PJ, Burkhart SS (2013) The evolution of suture anchors in arthroscopic rotator cuff repair. J Arthrosc Relat Surg 29(9):1589–1595. doi:10.1016/j.arthro.2013.05.011

    Article  Google Scholar 

  3. Pietschmann MF, Frohlich V, Ficklscherer A, Hausdorf J, Utzschneider S, Jansson V, Muller PE (2008) Pullout strength of suture anchors in comparison with transosseous sutures for rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 16(5):504–510. doi:10.1007/s00167-007-0460-3

    Article  PubMed  Google Scholar 

  4. Galland A, Airaudi S, Gravier R, Le Cann S, Chabrand P, Argenson JN (2013) Pullout strength of all suture anchors in the repair of rotator cuff tears: a biomechanical study. Int Orthop 37(10):2017–2023. doi:10.1007/s00264-013-1984-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Burkhart SS, Diaz Pagàn JL, Wirth MA, Athanasiou KA (1997) Cyclic loading of anchor-based rotator cuff repairs: confirmation of the tension overload phenomenon and comparison of suture anchor fixation with transosseous fixation. J Arthrosc Relat Surg 13(6):720–724. doi:10.1016/S0749-8063(97)90006-2

    Article  CAS  Google Scholar 

  6. Brown BS, Cooper AD, McIff TE, Key VH, Toby EB (2008) Initial fixation and cyclic loading stability of knotless suture anchors for rotator cuff repair. J Shoulder Elb Surg 17(2):313–318. doi:10.1016/j.jse.2007.05.016

    Article  Google Scholar 

  7. Gerber C, Schneeberger AG, Beck M, Schlegel U (1994) Mechanical strength of repairs of the rotator cuff. J Bone Joint Surg Br Vol 76(3):371–380

    CAS  Google Scholar 

  8. Henry P, Wasserstein D, Park S, Dwyer T, Chahal J, Slobogean G, Schemitsch E (2015) Arthroscopic repair for chronic massive rotator cuff tears: a systematic review. J Arthrosc Relat Surg. doi:10.1016/j.arthro.2015.06.038

    Google Scholar 

  9. Kaar TK, Schenck RC Jr, Wirth MA, Rockwood CA Jr (2001) Complications of metallic suture anchors in shoulder surgery: a report of 8 cases. J Arthrosc Relat Surg 17(1):31–37. doi:10.1053/jars.2001.18246

    Article  CAS  Google Scholar 

  10. Benson EC, MacDermid JC, Drosdowech DS, Athwal GS (2010) The incidence of early metallic suture anchor pullout after arthroscopic rotator cuff repair. J Arthrosc Relat Surg 26(3):310–315. doi:10.1016/j.arthro.2009.08.015

    Article  Google Scholar 

  11. Lederman ES, Nugent MT, Chhabra A (2011) Metallosis after hemiarthroplasty as a result of glenoid erosion causing contact with retained metallic suture anchors: a case series. J Shoulder Elb Surg 20(6):e12–e15. doi:10.1016/j.jse.2011.03.004

    Article  Google Scholar 

  12. Pilge H, Spang J, Rose T, Wolter H, Woertler K, Imhoff AB (2012) Osteolysis after rotator cuff repair with bioabsorbable anchors. Arch Orthop Trauma Surg 132(3):305–310. doi:10.1007/s00402-011-1369-3

    Article  CAS  PubMed  Google Scholar 

  13. Alan Barber F, Herbert MA, Hapa O, Rapley JH, Barber CAK, Bynum JA, Hrnack SA (2011) Biomechanical analysis of pullout strengths of rotator cuff and glenoid anchors: 2011 update. J Arthrosc Relat Surg 27(7):895–905. doi:10.1016/j.arthro.2011.02.016

    Article  Google Scholar 

  14. Hernigou P (2015) Bone transplantation and tissue engineering, part III: allografts, bone grafting and bone banking in the twentieth century. Int Orthop 39(3):577–587. doi:10.1007/s00264-015-2669-y

    Article  PubMed  Google Scholar 

  15. Strong DM (2000) The US navy tissue bank: 50 years on the cutting edge. Cell Tissue Bank 1(1):9–16. doi:10.1023/a:1010151928461

    Article  PubMed  Google Scholar 

  16. Burkhart SS (2014) Reprint of: the Deadman theory of suture anchors: observations along a South Texas fence line. J Arthrosc Relat Surg 30(8):895–899. doi:10.1016/j.arthro.2014.06.001

    Article  Google Scholar 

  17. Spang JT, Buchmann S, Brucker PU, Kouloumentas P, Obst T, Schröder M, Burgkart R, Imhoff AB (2009) A biomechanical comparison of 2 transosseous-equivalent double-row rotator cuff repair techniques using bioabsorbable anchors: cyclic loading and failure behavior. J Arthrosc Relat Surg 25(8):872–879. doi:10.1016/j.arthro.2009.02.023

    Article  Google Scholar 

  18. Barber FA, Hapa O, Bynum JA (2010) Comparative testing by cyclic loading of rotator cuff suture anchors containing multiple high-strength sutures. J Arthrosc Relat Surg 26(9 Supplement):S134–S141. doi:10.1016/j.arthro.2010.03.007

    Article  Google Scholar 

  19. Randelli P, Cucchi D, Ragone V, de Girolamo L, Cabitza P, Randelli M (2015) History of rotator cuff surgery. Knee Surg Sports Traumatol Arthrosc 23(2):344–362. doi:10.1007/s00167-014-3445-z

    Article  PubMed  Google Scholar 

  20. Barber FA, Herbert MA (2013) Cyclic loading biomechanical analysis of the pullout strengths of rotator cuff and glenoid anchors: 2013 update. J Arthrosc Relat Surg 29(5):832–844. doi:10.1016/j.arthro.2013.01.028

    Article  Google Scholar 

  21. Turner AS (2007) Experiences with sheep as an animal model for shoulder surgery: strengths and shortcomings. J Shoulder Elb Surg 16(5 Suppl):S158–S163. doi:10.1016/j.jse.2007.03.002

    Article  Google Scholar 

  22. Pietschmann MF, Froehlich V, Ficklscherer A, Wegener B, Jansson V, Müller PE (2008) Biomechanical testing of a new knotless suture anchor compared with established anchors for rotator cuff repair. J Shoulder Elb Surg 17(4):642–646. doi:10.1016/j.jse.2007.11.017

    Article  Google Scholar 

  23. Hyatt AE, Lavery K, Mino C, Dhawan A (2015) Suture anchor biomechanics after rotator cuff footprint decortication. J Arthrosc Relat Surg. doi:10.1016/j.arthro.2015.08.034

    Google Scholar 

  24. Barber FA, Herbert MA, Coons DA, Boothby MH (2006) Sutures and suture anchors—update 2006. J Arthrosc Relat Surg 22(10):1063–1069. doi:10.1016/j.arthro.2006.04.106, e1062

    Article  Google Scholar 

  25. Harrison JA, Wallace D, Van Sickle D, Martin T, Sonnabend DH, Walsh WR (2000) A novel suture anchor of high-density collagen compared with a metallic anchor. Results of a 12-week study in sheep. Am J Sports Med 28(6):883–887

    CAS  PubMed  Google Scholar 

  26. Goble EM, Somers WK, Clark R, Olsen RE (1994) The development of suture anchors for use in soft tissue fixation to bone. Am J Sports Med 22(2):236–239

    Article  CAS  PubMed  Google Scholar 

  27. Barber FA, Dockery WD, Cowden Iii CH (2013) The degradation outcome of biocomposite suture anchors made from poly L-lactide-Co-glycolide and β-tricalcium phosphate. J Arthrosc Relat Surg 29(11):1834–1839. doi:10.1016/j.arthro.2013.08.004

    Article  Google Scholar 

  28. Luangphakdy V, Walker E, Shinohara K, Pan H, Hefferan T, Bauer TW, Stockdale L, Saini S, Dadsetan M, Runge MB, Vasanji A, Griffith L, Yaszemski M, Muschler GF (2013) Evaluation of osteoconductive scaffolds in the canine femoral multi-defect model. Tissue Eng A 19(5–6):634–648. doi:10.1089/ten.TEA.2012.0289

    Article  CAS  Google Scholar 

  29. Romero R, Chubb L, Travers JK, Gonzales TR, Ehrhart NP, Kipper MJ (2015) Coating cortical bone allografts with periosteum-mimetic scaffolds made of chitosan, trimethyl chitosan, and heparin. Carbohydr Polym 122:144–151. doi:10.1016/j.carbpol.2015.01.015

    Article  CAS  PubMed  Google Scholar 

  30. Koefoed M, Ito H, Gromov K, Reynolds DG, Awad HA, Rubery PT, Ulrich-Vinther M, Soballe K, Guldberg RE, Lin AS, O’Keefe RJ, Zhang X, Schwarz EM (2005) Biological effects of rAAV-caAlk2 coating on structural allograft healing. Mol Ther 12(2):212–218. doi:10.1016/j.ymthe.2005.02.026

    Article  CAS  PubMed  Google Scholar 

  31. Millar NL, Bradley TA, Walsh NA, Appleyard RC, Tyler MJ, Murrell GA (2009) Frog glue enhances rotator cuff repair in a laboratory cadaveric model. J Shoulder Elb Surg 18(4):639–645. doi:10.1016/j.jse.2008.12.007

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledged Beijing Datsing Bio-tech Co., Ltd for their assistance in manufacture of the novel cortical bone anchor. This work was supported by the National High Technology Research and Development Program (“863” Program) of China (grant no. 2015AA020315).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Guo or Yujie Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Li, C., Qi, W. et al. A novel suture anchor constructed of cortical bone for rotator cuff repair: a biomechanical study on sheep humerus specimens. International Orthopaedics (SICOT) 40, 1913–1918 (2016). https://doi.org/10.1007/s00264-016-3185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-016-3185-4

Keywords

Navigation