International Orthopaedics

, Volume 40, Issue 6, pp 1117–1124 | Cite as

One-stage posterior focus debridement, interbody graft using titanium mesh cages, posterior instrumentation and fusion in the surgical treatment of lumbo-sacral spinal tuberculosis in the aged

  • Yu-Xiang Wang
  • Hong-Qi ZhangEmail author
  • Weiwei Liao
  • Ming-xing Tang
  • Chao-feng Guo
  • Ang Deng
  • Jian-Huang Wu
  • Jin-Yang Liu
Original Paper



Aged patients represent a high risk group for acquiring spinal tuberculosis, and it still remains a leading cause of kyphosis and paraplegia in developing nations. Aged patients often combined with cardiovascular and respiratory disease and single lung ventilation via anterior approach surgery could result in more post-operative complications. We aimed to analyze the efficacy and feasibility of surgical management of aged patients with lumbo-sacral spine tuberculosis using one-stage posterior focus debridement, interbody graft using titanium mesh cages, posterior instrumentation, and fusion.


From March 2009 and July 2012, 17 aged patients with lumbo-sacral spinal tuberculosis were treated with one-stage posterior focus debridement, interbody graft using titanium mesh cages, posterior instrumentation, and fusion. There were eight male and nine female with a mean age of 63.3 years (range: 60–71 years). The mean follow-up was 46.5 months (range 38–70 months). Patients were evaluated before and after surgery in terms of ESR, neurological status, visual analog scale (VAS), and lumbosacral angle.


Spinal tuberculosis was completely cured and the grafted bones were fused in all 17 patients. There were no recurrent tuberculous infections. ESR became normal within three months in all patients. The ASIA neurological classification and VAS scores improved in all cases. The average preoperative lumbosacral angle was 20.6° (range 18.1°–22.5°) and became 29.4° (range 27.1°–32.5°) at final follow-up.


Our results showed that one-stage posterior focus debridement, interbody graft using titanium mesh cages, posterior instrumentation, and fusion was an effective treatment for aged patients with lumbo-sacral spinal tuberculosis. It is characterized with minimum surgical trauma, good pain relief, good neurological recovery, and good reconstruction of the spinal stability.


Lumbo-sacral Posterior approach Spine tuberculosis The aged Titanium mesh cages 


Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Pigrau-Serralllach C, Rodriguez-Pardo D (2013) Bone and joint tuberculosis. Eur Spine J 22(Suppl 4):556–566. doi: 10.1007/s00586-012-2331-y CrossRefGoogle Scholar
  2. 2.
    Wellons JC, Zomorodi AR, Villaviciencio AT, Woods CW, Lawson WT, Eastwood JD (2004) Sacral tuberculosis: a case report and review of the literature. Surg Neurol 61(2):136–139CrossRefPubMedGoogle Scholar
  3. 3.
    Güzey FK, Emel E, Bas NS, Hacisalihoglu S, Seyithanoglu MH, Karacor SE, Ozkan N, Alatas I, Sel B (2005) Thoracic and lumbar tuberculous spondylitis treated by posterior debridement, graft placement, and instrumentation: a retrospective analysis in 19 cases. J Neurosurg Spine 3(6):450–458CrossRefPubMedGoogle Scholar
  4. 4.
    Chiriano J, Abou-Zamzam AM Jr, Urayeneza O, Zhang WW, Cheng W (2009) The role of the vascular surgeon in anterior retroperitoneal spine exposure: preservation of open surgical training. J Vasc Surg 50(1):148–151. doi: 10.1016/j.jvs.2009.01.007 CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang H, Lin M, Ge L, Li J, Wu J, Liu J (2012) Surgical management by one-stage posterior transforaminallumbar debridement, interbody fusion, and posterior instrumentation for lumbo-sacral tuberculosis in the aged. Arch Orthop Trauma Surg 132(12):1677–1683. doi: 10.1007/s00402-012-1604-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Hirakawa A, Miyamoto K, Masuda T, Fukuta S, Hosoe H, Iinuma N, Iwai C, Nishimoto H, Shimizu K (2010) Surgical outcome of 2-stage (posterior and anterior) surgical treatment using spinal instrumentation for tuberculous spondylitis. J Spinal Disord Tech 23(2):133–138. doi: 10.1097/BSD.0b013e31819a870f CrossRefPubMedGoogle Scholar
  7. 7.
    Zevallos M, Justman JE (2003) Tuberculosis in the elderly. Clin Geriatr Med 19(1):121–138CrossRefPubMedGoogle Scholar
  8. 8.
    Gong K, Wang Z, Luo Z (2011) Single-stage posterior debridement and transforaminal lumbar interbody fusion with autogenous bone grafting and posterior instrumentation in the surgical management of lumbar tuberculosis. Arch Orthop Trauma Surg 131(2):217–223. doi: 10.1007/s00402-010-1138-8 CrossRefPubMedGoogle Scholar
  9. 9.
    Wells WA, Konduri N, Chen C, Lee D, Ignatius HR, Gardiner E, Schwalbe NR (2010) Tuberculosis regimen change in high-burden countries. Int J Tuberc Lung Dis 14(12):1538–1547PubMedGoogle Scholar
  10. 10.
    Talu U, Gogus A, Ozturk C, Hamzaoglu A, Domanic U (2006) The role of posterior instrumentation and fusion after anterior radical debridement and fusion in the surgical treatment of spinal tuberculosis: experience of 127 cases. J Spinal Disord Tech 19(8):554–559CrossRefPubMedGoogle Scholar
  11. 11.
    Rajasekaran S (2012) Kyphotic deformity in spinal tuberculosis and its management. Int Orthop 36(2):359–365. doi: 10.1007/s00264-011-1469-2 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lee S-H, Sung J-K, Park Y-M (2006) Single-stage transpedicular decompression and posterior instrumentation in treatment of thoracic and thoracolumbar spinal tuberculosis a retrospective case series. J Spinal Disord Tech 19(8):595–602CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang HQ, Sheng B, Tang M, Guo C, Liu S, Huang S, Gao Q, Liu J, Wu J (2013) One-stage surgical treatment for upper thoracic spinal tuberculosis by internal fixation, debridement, and combined interbody and posterior fusion via posterior-only approach. Eur Spine J 22(3):616–623. doi: 10.1007/s00586-012-2470-1 CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang HQ, Huang S, Guo H, Ge L, Sheng B, Wang Y, Guo C, Tang M (2012) A clinical study of internal fixation, debridement and interbody thoracic fusion to treat thoracic tuberculosis via posterior approach only. Int Orthop 36(2):293–298. doi: 10.1007/s00264-011-1449-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Rath Stefan A, Ulrich N, Ortwin S, Hans-Peter R (1996) Neurosurgical management of thoracic and lumbar vertebral osteomyelitis and discitis in adults: a review of 43 consecutive surgically treated patients. Neurosurgery 38(5):926–933CrossRefGoogle Scholar
  16. 16.
    Jain AK (2002) Treatment of tuberculosis of the spine with neurologic complications. Clin Orthop Relat Res 398:75–84CrossRefPubMedGoogle Scholar
  17. 17.
    Bezer M, Kucukdurmaz F, Aydin N, Kocaoglu B, Guven O (2005) Tuberculous spondylitis of the lumbosacral region long-term follow-up of patients treated by chemotherapy, transpedicular drainage, posterior instrumentation, and fusion. J Spinal Disord Tech 18(5):425–429CrossRefPubMedGoogle Scholar
  18. 18.
    Lönnroth K, Raviglione M (2008) Global epidemiology of tuberculosis: prospects for control. Semin Respir Crit Care Med 29:481–491. doi: 10.1055/s-0028-1085700 CrossRefPubMedGoogle Scholar
  19. 19.
    Ha KY, Chung YG, Ryoo SJ (2005) Adherence and biofilm formation of Staphylococcus epidermidis and Mycobacterium tuberculosis on various spinal implants. Spine 30(1):38–43CrossRefPubMedGoogle Scholar
  20. 20.
    Klöckner C, Valencia R (2003) Sagittal alignment after anterior debridement and fusion with or without additional posterior instrumentation in the treatment of pyogenic and tuberculous spondylodiscitis. Spine 28(10):1036–1042PubMedGoogle Scholar
  21. 21.
    Heyde CE, Boehm H, El Saghir H, Tschoke SK, Kayser R (2006) Surgical treatment of spondylodiscitis in the cervical spine: a minimum 2-year follow-up. Eur Spine J 15(9):1380–1387CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Oga M, Arizono T, Takasita M, Sugioka Y (1993) Evaluation of the risk of instrumentation as a foreign body in spinal tuberculosis: clinical and biologic study. Spine 18(13):1890–1894CrossRefPubMedGoogle Scholar
  23. 23.
    Jain AK, Jain S (2012) Instrumented stabilization in spinal tuberculosis. Int Orthop 36(2):285–292. doi: 10.1007/s00264-011-1296-5 CrossRefPubMedGoogle Scholar
  24. 24.
    Govender S, Kumar KP (2003) Cortical allografts in spinal tuberculosis. Int Orthop 27(4):244–248CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Govender S, Parbhoo AH (1999) Support of the anterior column with allografts in tuberculosis of the spine. J Bone Joint Surg (Br) 81(1):106–109CrossRefGoogle Scholar
  26. 26.
    Barth E, Myrvik QM, Wagner W, Gristina AG (1989) In vitro and in vivo comparative colonization of Staphylococcus aureus and Staphylococcus epidermidis on orthopaedic implant materials. Biomaterials 10(5):325–328CrossRefPubMedGoogle Scholar
  27. 27.
    Oga M, Sugioka Y, Hobgood CD, Gristina AG, Myrvik QN (1988) Surgical biomaterials and differential colonization by Staphylococcus epidermidis. Biomaterials 9(3):285–289CrossRefPubMedGoogle Scholar
  28. 28.
    Chang CC, Merritt K (1994) Infection at the site of implanted materials with and without preadhered bacteria. J Orthop Res 12(4):526–531CrossRefPubMedGoogle Scholar
  29. 29.
    Lu DC, Wang V, Chou D (2009) The use of allograft or autograft and expandable titanium cages for the treatment of vertebral osteomyelitis. Neurosurgery 64(1):122–129. doi: 10.1227/01.NEU.0000336332.11957.0B CrossRefPubMedGoogle Scholar
  30. 30.
    Robinson Y, Tschoeke SK, Kayser R, Boehm H, Heyde CE (2009) Reconstruction of large defects in vertebral osteomyelitis with expandable titanium cages. Int Orthop 33(3):745–749. doi: 10.1007/s00264-008-0567-2 CrossRefPubMedGoogle Scholar
  31. 31.
    Pee YH, Park JD, Choi YG, Lee SH (2008) Anterior debridement and fusion followed by posterior pedicle screw fixation in pyogenic spondylodiscitis: autologous iliac bone strut versus cage. J Neurosurg Spine 8(5):405–412. doi: 10.3171/SPI/2008/8/5/405 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang HQ, Hu X, Yin X, Chen Y (2015) One-stage combined anterior-posterior approach treatment of multiple cervicothoracic spinal tuberculosis with kyphosis. Int Orthop 39(8):1605–1610. doi: 10.1007/s00264-015-2778-7 CrossRefPubMedGoogle Scholar
  33. 33.
    Wang Z, Yuan H, Geng G, Shi J, Jin W (2012) Posterior mono-segmental fixation, combined with anterior debridement and strut graft, for treatment of the mono-segmental lumbar spine tuberculosis. Int Orthop 36(2):325–329. doi: 10.1007/s00264-011-1475-4 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kamara E, Mehta S, Brust JC, Jain AK (2012) Effect of delayed diagnosis on severity of Pott’s disease. Int Orthop 36(2):245–254. doi: 10.1007/s00264-011-1432-2 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© SICOT aisbl 2016

Authors and Affiliations

  • Yu-Xiang Wang
    • 1
  • Hong-Qi Zhang
    • 1
    Email author
  • Weiwei Liao
    • 2
  • Ming-xing Tang
    • 1
  • Chao-feng Guo
    • 1
  • Ang Deng
    • 1
  • Jian-Huang Wu
    • 1
  • Jin-Yang Liu
    • 1
  1. 1.Department of Spine Surgery, Xiangya Spinal Surgery CenterXiangya Hospital of Central South UniversityChangShaChina
  2. 2.Department of Health Management CenterXiangya Hospital of Central South UniversityChangShaChina

Personalised recommendations