International Orthopaedics

, Volume 40, Issue 6, pp 1171–1177 | Cite as

Surgical debridement with retention of spinal instrumentation and long-term antimicrobial therapy for multidrug-resistant surgical site infections after spinal surgery: a case series

  • Shingo Miyazaki
  • Kenichiro KakutaniEmail author
  • Koichiro Maeno
  • Toru Takada
  • Takashi Yurube
  • Masahiro Kurosaka
  • Kotaro Nishida
Original Paper



Post-operative surgical site infection (SSI) is one of the most significant complications after instrumented spinal surgery. However, implant retention feasibility for early-onset multidrug-resistant SSI is still controversial. We aimed to verify our therapeutic strategy, surgical debridement with implant retention and long-term antimicrobial therapy for post-operative early-onset multidrug-resistant SSI.


We retrospectively analyzed the clinical course of 11 cases [eight men and three women, with a mean age of 70.4 (54–82) years] with early-onset multidrug-resistant SSI out of 409 consecutive cases of spinal instrumentation surgery performed between 2007 and 2013 at our institution.


The median duration of follow-up was 868 (178–1,922) days. All SSIs were controlled, without recurrence during follow-up. The microbial pathogens were methicillin-resistant Staphylococcus aureus (seven cases), multidrug-resistant Corynebacterium (two cases), methicillin-resistant Staphylococcus epidermidis (one case), and methicillin-resistant coagulase-negative Staphylococcus aureus (one case). The mean duration from SSI diagnosis to surgery was 2.9 (1–6) days. Ten patients underwent surgical debridement with implant retention. No patients required multiple operations. All patients were given antimicrobial treatments. Mean duration of intravenous antimicrobials (vancomycin, vancomycin+ piperacillin/tazobactam, or gentamicin) was 66.5 (12–352) days and 336 (89–1,673) days for oral antimicrobials (rifampicin + sulfamethoxazole/trimethoprim, sulfamethoxazole/trimethoprim, or minomycin). The mean duration of clinical signs and symptom recovery was 31.0 (7–73) days, and the mean time for normalization of C-reactive protein was 54.5 (7–105) days.


Early-onset multidrug-resistant SSI was successfully treated by surgical debridement with implant retention and long-term antimicrobial therapy.


Surgical site infection Multidrug resistance Surgical debridement Implant retention Antimicrobial therapy 



We thank Dr Keyra Martinez, of Edanz Group Ltd., for her editorial assistance during the manuscript preparation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no potential conflicts of interest.


  1. 1.
    Hedequist D, Haugen A, Hresko T, Emans J (2009) Failure of attempted implant retention in spinal deformity delayed surgical site infections. Spine 34:60–64. doi: 10.1097/BRS.0b013e31818ed75e CrossRefPubMedGoogle Scholar
  2. 2.
    Mok JM, Guillaume TJ, Talu U, Berven SH, Deviren V, Kroeber M, Bradford DS, Hu SS (2009) Clinical outcome of deep wound infection after instrumented posterior spinal fusion: a matched cohort analysis. Spine 34:578–583. doi: 10.1097/BRS.0b013e31819a827c CrossRefPubMedGoogle Scholar
  3. 3.
    Weinstein MA, McCabe JP, Cammisa FP Jr (2000) Postoperative spinal wound infection: a review of 2,391 consecutive index procedures. J Spinal Disord 13:422–426CrossRefPubMedGoogle Scholar
  4. 4.
    Pull ter Gunne AF, van Laarhoven CJ, Cohen DB (2010) Incidence of surgical site infection following adult spinal deformity surgery: an analysis of patient risk. Eur Spine J 19:982–988. doi: 10.1007/s00586-009-1269-1 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Glassman SD, Dimar JR, Puno RM, Johnson JR (1996) Salvage of instrumental lumbar fusions complicated by surgical wound infection. Spine 21:2163–2169CrossRefPubMedGoogle Scholar
  6. 6.
    Ahmed R, Greenlee JD, Traynelis VC (2012) Preservation of spinal instrumentation after development of postoperative bacterial infections in patients undergoing spinal arthrodesis. J Spinal Disord Tech 25:299–302. doi: 10.1097/BSD.0b013e31821fbf72 CrossRefPubMedGoogle Scholar
  7. 7.
    Kowalski TJ, Berbari EF, Huddleston PM, Steckelberg JM, Mandrekar JN, Osmon DR (2007) The management and outcome of spinal implant infections: contemporary retrospective cohort study. Clin Infect Dis 44:913–920. doi: 10.1086/512194 CrossRefPubMedGoogle Scholar
  8. 8.
    Viola RW, King HA, Adler SM, Wilson CB (1997) Delayed infection after elective spinal instrumentation and fusion. A retrospective analysis of eight cases. Spine 22:2444–2450, discussion 2450–2441 CrossRefPubMedGoogle Scholar
  9. 9.
    Rihn JA, Lee JY, Ward WT (2008) Infection after the surgical treatment of adolescent idiopathic scoliosis: evaluation of the diagnosis, treatment, and impact on clinical outcomes. Spine 33:289–294. doi: 10.1097/BRS.0b013e318162016e CrossRefPubMedGoogle Scholar
  10. 10.
    Bachy M, Bouyer B, Vialle R (2012) Infections after spinal correction and fusion for spinal deformities in childhood and adolescence. Int Orthop 36:465–469. doi: 10.1007/s00264-011-1439-8 CrossRefPubMedGoogle Scholar
  11. 11.
    Gerometta A, Rodriguez Olaverri JC, Bitan F (2012) Infections in spinal instrumentation. Int Orthop 36:457–464. doi: 10.1007/s00264-011-1426-0 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Meredith DS, Kepler CK, Huang RC, Brause BD, Boachie-Adjei O (2012) Postoperative infections of the lumbar spine: presentation and management. Int Orthop 36:439–444. doi: 10.1007/s00264-011-1427-z CrossRefPubMedGoogle Scholar
  13. 13.
    Quaile A (2012) Infections associated with spinal implants. Int Orthop 36:451–456. doi: 10.1007/s00264-011-1408-2 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nunez-Pereira S, Pellise F, Rodriguez-Pardo D, Pigrau C, Bago J, Villanueva C, Caceres E (2013) Implant survival after deep infection of an instrumented spinal fusion. Bone Jt J 95-B:1121–1126. doi: 10.1302/0301-620X.95B8.30784 CrossRefGoogle Scholar
  15. 15.
    Hong HS, Chang MC, Liu CL, Chen TH (2008) Is aggressive surgery necessary for acute postoperative deep spinal wound infection? Spine 33:2473–2478. doi: 10.1097/BRS.0b013e3181894ff0 CrossRefPubMedGoogle Scholar
  16. 16.
    Ammerlaan HS, Kluytmans JA, Wertheim HF, Nouwen JL, Bonten MJ (2009) Eradication of methicillin-resistant Staphylococcus aureus carriage: a systematic review. Clin Infect Dis 48:922–930. doi: 10.1086/597291 CrossRefPubMedGoogle Scholar
  17. 17.
    Falagas ME, Bliziotis IA, Fragoulis KN (2007) Oral rifampin for eradication of Staphylococcus aureus carriage from healthy and sick populations: a systematic review of the evidence from comparative trials. Am J Infect Control 35:106–114. doi: 10.1016/j.ajic.2006.09.005 CrossRefPubMedGoogle Scholar
  18. 18.
    Samuel JR, Gould FK (2010) Prosthetic joint infections: single versus combination therapy. J Antimicrob Chemother 65:18–23. doi: 10.1093/jac/dkp398 CrossRefPubMedGoogle Scholar
  19. 19.
    Walsh TJ, Standiford HC, Reboli AC, John JF, Mulligan ME, Ribner BS, Montgomerie JZ, Goetz MB, Mayhall CG, Rimland D et al (1993) Randomized double-blinded trial of rifampin with either novobiocin or trimethoprim-sulfamethoxazole against methicillin-resistant Staphylococcus aureus colonization: prevention of antimicrobial resistance and effect of host factors on outcome. Antimicrob Agents Chemother 37:1334–1342CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Adra M, Lawrence KR (2004) Trimethoprim/sulfamethoxazole for treatment of severe Staphylococcus aureus infections. Ann Pharmacother 38:338–341. doi: 10.1345/aph.1D156 CrossRefPubMedGoogle Scholar
  21. 21.
    Stein A, Bataille JF, Drancourt M, Curvale G, Argenson JN, Groulier P, Raoult D (1998) Ambulatory treatment of multidrug-resistant Staphylococcus-infected orthopedic implants with high-dose oral co-trimoxazole (trimethoprim-sulfamethoxazole). Antimicrob Agents Chemother 42:3086–3091PubMedPubMedCentralGoogle Scholar
  22. 22.
    Elwell LP, Wilson HR, Knick VB, Keith BR (1986) In vitro and in vivo efficacy of the combination trimethoprim-sulfamethoxazole against clinical isolates of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 29:1092–1094CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nemoto T, Yamasaki Y, Torikai K, Ishii O, Fujitani S, Matsuda T (2012) A case of MRSA infection in multiple artificial joints successfully treated with conservative medical treatment. Kansenshogaku Zasshi 86:411–414CrossRefPubMedGoogle Scholar
  24. 24.
    Fujino T, Amari Y, Mohri M, Noma M, Yamamoto H (2009) MRSA tricuspid valve infective endocarditis with multiple embolic lung abscesses treated by combination therapy of vancomycin, rifampicin, and sulfamethoxazole/trimethoprim. J Cardiol 53:146–149. doi: 10.1016/j.jjcc.2008.06.007 CrossRefPubMedGoogle Scholar

Copyright information

© SICOT aisbl 2015

Authors and Affiliations

  • Shingo Miyazaki
    • 1
  • Kenichiro Kakutani
    • 1
    Email author
  • Koichiro Maeno
    • 1
  • Toru Takada
    • 1
  • Takashi Yurube
    • 1
  • Masahiro Kurosaka
    • 1
  • Kotaro Nishida
    • 1
  1. 1.Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan

Personalised recommendations