Skip to main content

Advertisement

Log in

Chondrocyte survival in osteochondral transplant cylinders depends on the harvesting technique

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

In autologous osteochondral transplantation, the edges of the harvested plug are particularly susceptible to mechanical or thermal damage to the chondrocytes. We hypothesised that the applied harvesting device has an impact on chondrocyte vitality.

Methods

Both knees of five blackhead sheep (ten knees) underwent open osteochondral plug harvesting with three different circular harvesting devices (osteoarticular transfer system harvester [OATS; diameter 8 mm; Arthrex, Munich, Germany], diamond cutter [DC; diameter 8.35 mm; Karl Storz, Tuttlingen, Germany] and hollow reamer with cutting crown [HRCC; diameter 7 mm; Dannoritzer, Tuttlingen, Germany]) from distinctly assigned anatomical sites of the knee joint. The rotary cutters (DC and HRCC) were either used with (+) or without cooling (−). Surgical cuts of the cartilage with a scalpel blade were chosen as control method. After cryotomy cutting, chondrocyte vitality was assessed using fluorescence microscopy and a Live/Dead assay.

Results

There were distinct patterns of chondrocyte vitality, with reproducible accumulations of dead chondrocytes along the harvesting edge. No statistical difference in chondrocyte survivorship was seen between the OATS technique and the control method, or between the HRCC+ technique and the control method (P > 0.05). The DC+, HRCC− and DC− techniques yielded significantly lower chondrocyte survival rates compared with the control method (P < 0.05).

Conclusions

Chondrocyte survival in osteochondral cylinders depends on the applied harvesting technique. The use of rotary cutters without cooling yielded worst results, while the traditional OATS punch and rotary cutters with cooling achieved comparable rates of chondrocyte vitality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Badekas T, Takvorian M, Souras N (2013) Treatment principles for osteochondral lesions in foot and ankle. Int Orthop 37:1697–1706. doi:10.1007/s00264-013-2076-1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Biant LC, Bentley G, Vijayan S, Skinner JA, Carrington RW (2014) Long-term results of autologous chondrocyte implantation in the knee for chronic chondral and osteochondral defects. Am J Sports Med 42:2178–2183. doi:10.1177/0363546514539345

    Article  PubMed  Google Scholar 

  3. Buda R, Vannini F, Castagnini F, Cavallo M, Ruffilli A, Ramponi L, Pagliazzi G, Giannini S (2015) Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop 39:893–900. doi:10.1007/s00264-015-2685-y

    Article  PubMed  Google Scholar 

  4. Chiang H, Liao CJ, Hsieh CH, Shen CY, Huang YY, Jiang CC (2013) Clinical feasibility of a novel biphasic osteochondral composite for matrix-associated autologous chondrocyte implantation. Osteoarthr Cartil 21:589–598. doi:10.1016/j.joca.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  5. Evans PJ, Miniaci A, Hurtig MB (2004) Manual punch versus power harvesting of osteochondral grafts. Arthroscopy 20:306–310. doi:10.1016/j.arthro.2004.01.012

    Article  PubMed  Google Scholar 

  6. Filardo G, Kon E, Perdisa F, Balboni F, Marcacci M (2014) Autologous osteochondral transplantation for the treatment of knee lesions: results and limitations at two years’ follow-up. Int Orthop 38:1905–1912. doi:10.1007/s00264-014-2322-1

    Article  PubMed  Google Scholar 

  7. Gagala J, Tarczynska M, Gaweda K (2013) Clinical and radiological outcomes of treatment of avascular necrosis of the femoral head using autologous osteochondral transfer (mosaicplasty): preliminary report. Int Orthop 37:1239–1244. doi:10.1007/s00264-013-1893-6

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hangody L, Vasarhelyi G, Hangody LR, Sukosd Z, Tibay G, Bartha L, Bodo G (2008) Autologous osteochondral grafting—technique and long-term results. Injury 39(Suppl 1):S32–S39. doi:10.1016/j.injury.2008.01.041

    Article  PubMed  Google Scholar 

  9. Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 85-A:185–192

    CAS  PubMed  Google Scholar 

  10. Huntley JS, Bush PG, McBirnie JM, Simpson AH, Hall AC (2005) Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J Bone Joint Surg Am 87:351–360

    Article  CAS  PubMed  Google Scholar 

  11. Karataglis D, Green MA, Learmonth DJ (2006) Autologous osteochondral transplantation for the treatment of chondral defects of the knee. Knee 13:32–35

    Article  CAS  PubMed  Google Scholar 

  12. Kircher J, Patzer T, Magosch P, Lichtenberg S, Habermeyer P (2009) Osteochondral autologous transplantation for the treatment of full-thickness cartilage defects of the shoulder: results at nine years. J Bone Joint Surg (Br) 91:499–503. doi:10.1302/0301-620X.91B4.21838

    Article  CAS  Google Scholar 

  13. Kock NB, Hannink G, van Kampen A, Verdonschot N, van Susante JL, Buma P (2011) Evaluation of subsidence, chondrocyte survival and graft incorporation following autologous osteochondral transplantation. Knee Surg Sports Traumatol Arthrosc 19:1962–1970. doi:10.1007/s00167-011-1650-6

    Article  PubMed  PubMed Central  Google Scholar 

  14. McGregor AJ, Amsden BG, Waldman SD (2011) Chondrocyte repopulation of the zone of death induced by osteochondral harvest. Osteoarthr Cartil 19:242–248. doi:10.1016/j.joca.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  15. Petri M, Broese M, Simon A, Liodakis E, Ettinger M, Guenther D, Zeichen J, Krettek C, Jagodzinski M, Haasper C (2013) CaReS (MACT) versus microfracture in treating symptomatic patellofemoral cartilage defects: a retrospective matched-pair analysis. J Orthop Sci 18:38–44. doi:10.1007/s00776-012-0305-x

    Article  PubMed  Google Scholar 

  16. Petri M, Ettinger M, von Falck C, Hawi N, Jagodzinski M, Haasper C (2013) Reconstruction of osteochondral defects by combined bone grafting and a bilayer collagen membrane as a sandwich technique. Orthop Rev (Pavia) 5, e36. doi:10.4081/or.2013.e36

    Article  Google Scholar 

  17. Sasaki K, Matsumoto T, Matsushita T, Kubo S, Ishida K, Tei K, Akisue T, Kurosaka M, Kuroda R (2012) Osteochondral autograft transplantation for juvenile osteochondritis dissecans of the knee: a series of twelve cases. Int Orthop 36:2243–2248. doi:10.1007/s00264-012-1648-9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vogt S, Siebenlist S, Hensler D, Weigelt L, Ansah P, Woertler K, Imhoff AB (2011) Osteochondral transplantation in the elbow leads to good clinical and radiologic long-term results: an 8- to 14-year follow-up examination. Am J Sports Med 39:2619–2625. doi:10.1177/0363546511420127

    Article  PubMed  Google Scholar 

  19. Weigelt L, Siebenlist S, Hensler D, Imhoff AB, Vogt S (2015) Treatment of osteochondral lesions in the elbow: results after autologous osteochondral transplantation. Arch Orthop Trauma Surg 135:627–634. doi:10.1007/s00402-015-2204-z

    Article  CAS  PubMed  Google Scholar 

  20. Woelfle JV, Reichel H, Nelitz M (2013) Indications and limitations of osteochondral autologous transplantation in osteochondritis dissecans of the talus. Knee Surg Sports Traumatol Arthrosc 21:1925–1930. doi:10.1007/s00167-013-2483-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The surgical materials for this study were donated by Arthrex (Munich, Germany), Karl Storz (Tuttlingen, Germany) and Dannoritzer (Tuttlingen, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Omar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Benedikt Hafke and Maximilian Petri contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafke, B., Petri, M., Suero, E. et al. Chondrocyte survival in osteochondral transplant cylinders depends on the harvesting technique. International Orthopaedics (SICOT) 40, 1553–1558 (2016). https://doi.org/10.1007/s00264-015-3065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-3065-3

Keywords

Navigation