Skip to main content
Log in

Analysis of migration of the Nanos® short-stem hip implant within two years after surgery

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Short-stem implants provide a bone-preserving alternative in total hip arthroplasty. However, some evidence exists that the smaller implant-bone contact surface may compromise primary stability and impair osseo-integration. The purpose of this study was to analyse the migration characteristics of the Nanos® short stem over two years by means of model-based roentgen stereophotogrammetric analysis (MBRSA).

Methods

Eighteen patients aged 53.6 ± 7.2 years were included. After being treated with a Nanos implant, 14 patients were followed-up radiologically at three, six, 12 and 24 months by means of MBRSA. Early implant migration was calculated. Clinical data have been assessed in addition.

Results

Highest translational migration was observed with a mean value of –0.22 ± 0.39 mm along the proximo-distal axis after three months and highest rotational migration with 0.8 ± 3.2° also around the y-axis after two years. The resulting total migration was 0.46 ± 0.31 mm, with the largest proportion occurring within three months after surgery (0.40 ± 0.34 mm).

Conclusion

The Nanos short-stem hip implant shows only a slight initial migration within three months after implantation, followed by secondary stabilisation. These results suggest both good primary stability and osseo-integration, suggesting a low risk of aseptic loosening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McLaughlin JR (1997) Total hip arthroplasty with an uncemented femoral component. Excellent results at ten-year follow-up. J Bone Joint Surg (Br) 79:900–7

    Article  CAS  Google Scholar 

  2. Hube R (2004) Early functional results with the Mayo-hip, a short stem system with metaphyseal-intertrochanteric fixation. Orthopade 33:1249–58

    Article  CAS  PubMed  Google Scholar 

  3. Reimeringer M, Nuno N, Desmarais-Trepanier C et al (2013) The influence of uncemented femoral stem length and design on its primary stability: a finite element analysis. Comput Methods Biomech Biomed Engin 16:1221–31

    Article  CAS  PubMed  Google Scholar 

  4. Rohrl SM, Li MG, Pedersen E et al (2006) Migration pattern of a short femoral neck preserving stem. Clin Orthop Relat Res 448:73–8

    Article  CAS  PubMed  Google Scholar 

  5. Nieuwenhuijse MJ, Valstar ER, Nelissen RG (2012) 5-year clinical and radiostereometric analysis (RSA) follow-up of 39 CUT femoral neck total hip prostheses in young osteoarthritis patients. Acta Orthop 83:334–41

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lazarinis S, Mattsson P, Milbrink J et al (2013) A prospective cohort study on the short collum femoris-preserving (CFP) stem using RSA and DXA. Primary stability but no prevention of proximal bone loss in 27 patients followed for 2 years. Acta Orthop 84:32–9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zeh A, Pankow F, Rollinhoff M et al (2013) A prospective dual-energy X-ray absorptiometry study of bone remodeling after implantation of the Nanos short-stemmed prosthesis. Acta Orthop Belg 79:174–80

    PubMed  Google Scholar 

  8. Ryd L, Albrektsson BE, Carlsson L et al (1995) Roentgen stereophotogrammetric analysis as a predictor of mechanical loosening of knee prostheses. J Bone Joint Surg (Br) 77:377–83

    CAS  Google Scholar 

  9. Karrholm J, Borssen B, Lowenhielm G, Snorrason F (1994) Does early micromotion of femoral stem prostheses matter? 4-7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg (Br) 76:912–7

    CAS  Google Scholar 

  10. Valstar ER (2006) Radiostereometric analysis in orthopaedic surgery: editorial comment. Clin Orthop Relat Res 448:2

    Article  PubMed  Google Scholar 

  11. Sundfeldt M, Carlsson LV, Johansson CB et al (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77:177–97

    Article  PubMed  Google Scholar 

  12. van Oldenrijk J, Molleman J, Klaver M et al (2014) Revision rate after short-stem total hip arthroplasty: a systematic review of 49 studies. Acta Orthop 85:250–8

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gulow J, Scholz R, Freiherr vS-S (2007) Short-stemmed endoprostheses in total hip arthroplasty. Orthopade 36:353–9

    Article  CAS  PubMed  Google Scholar 

  14. Lombardi AV, Jr., Berend KR, Adams JB (2009) A short stem solution: through small portals. Orthopedics 32(9)

  15. Valstar ER (2001) Model-based roentgen stereophotogrammetry of orthopaedic implants. J Biomech 34:715–22

    Article  CAS  PubMed  Google Scholar 

  16. Kaptein BL (2003) A new model-based RSA method validated using CAD models and models from reversed engineering. J Biomech 36:873–82

    Article  CAS  PubMed  Google Scholar 

  17. Valstar ER, Gill R, Ryd L et al (2005) Guidelines for standardization of radiostereometry (RSA) of implants. Acta Orthop 76:563–72

    Article  PubMed  Google Scholar 

  18. Seehaus F, Emmerich J, Kaptein BL et al (2009) Experimental analysis of model-based roentgen stereophotogrammetric analysis (MBRSA) on four typical prosthesis components. J Biomech Eng 131:041004–1

    Article  PubMed  Google Scholar 

  19. Klassbo M, Larsson E, Mannevik E (2003) Hip disability and osteoarthritis outcome score. An extension of the Western Ontario and McMaster universities osteoarthritis index. Scand J Rheumatol 32:46–51

    Article  PubMed  Google Scholar 

  20. Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 51:737–55

    CAS  PubMed  Google Scholar 

  21. Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30:473–83

    Article  PubMed  Google Scholar 

  22. Morrey BF, Adams RA, Kessler M (2000) A conservative femoral replacement for total hip arthroplasty. A prospective study. J Bone Joint Surg (Br) 82:952–8

    Article  CAS  Google Scholar 

  23. Stefansdottir A, Franzen H, Johnsson R et al (2004) Movement pattern of the Exeter femoral stem; a radiostereometric analysis of 22 primary hip arthroplasties followed for 5 years. Acta Orthop Scand 75:408–14

    Article  PubMed  Google Scholar 

  24. Nieuwenhuijse MJ, Valstar ER, Kaptein BL, Nelissen RG (2012) The Exeter femoral stem continues to migrate during its first decade after implantation: 10–12 years of follow-up with radiostereometric analysis (RSA). Acta Orthop 83:129–34

    Article  PubMed  PubMed Central  Google Scholar 

  25. McCalden RW, Charron KD, Yuan X et al (2010) Randomised controlled trial comparing early migration of two collarless polished cemented stems using radiostereometric analysis. J Bone Joint Surg (Br) 92:935–40

    Article  CAS  Google Scholar 

  26. Derbyshire B, Porter ML (2007) A study of the Elite Plus femoral component using radiostereometric analysis. J Bone Joint Surg (Br) 89:730–5

    Article  CAS  Google Scholar 

  27. Callary SA, Campbell DG, Mercer GE et al (2012) The 6-year migration characteristics of a hydroxyapatite-coated femoral stem: a radiostereometric analysis study. J Arthroplasty 27:1344–8

    Article  PubMed  Google Scholar 

  28. Stihsen C, Radl R, Keshmiri A et al (2012) Subsidence of a cementless femoral component influenced by body weight and body mass index. Int Orthop 36:941–7

    Article  PubMed  Google Scholar 

  29. Baad-Hansen T, Storgaard Jakobsen S, Soballe K (2011) Two-year migration results of the ReCap hip resurfacing system-a radiostereometric follow-up study of 23 hips. Int Orthop 35:497–502

    Article  PubMed  Google Scholar 

  30. Campbell D, Mercer G, Nilsson KG et al (2011) Early migration characteristics of a hydroxyapatite-coated femoral stem: an RSA study. Int Orthop 35:483–8

    Article  PubMed  Google Scholar 

  31. de Vries LM (2014) The predictive value of radiostereometric analysis for stem survival in total hip arthroplasty. A systematic review. Hip Int 24:215–22

    Article  PubMed  Google Scholar 

  32. Stukenborg-Colsman C (2007) Femoral neck prostheses. Orthopade 36:347–52

    Article  CAS  PubMed  Google Scholar 

  33. Krismer M, Biedermann R, Stockl B et al (1999) The prediction of failure of the stem in THR by measurement of early migration using EBRA-FCA. Einzel-bild-roentgen-analyse-femoral component analysis. J Bone Joint Surg (Br) 81:273–80

    Article  CAS  Google Scholar 

  34. Kaipel M, Grabowiecki P, Sinz K et al (2015) Migration characteristics and early clinical results of the NANOS® short-stem hip arthroplasty. Wien Klin Wochenschr 127(9–10):375–8

    Article  PubMed  Google Scholar 

  35. Freitag T, Kappe T, Fuchs M et al (2014) Migration pattern of a femoral short-stem prosthesis: a 2-year EBRA-FCA-study. Arch Orthop Trauma Surg 134:1003–8

    Article  PubMed  Google Scholar 

  36. Schmidutz F, Graf T, Mazoochian F et al (2012) Migration analysis of a metaphyseal anchored short-stem hip prosthesis. Acta Orthop 83:360–5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gotze C, Ehrenbrink J, Ehrenbrink H (2010) Is there a bone-preserving bone remodelling in short-stem prosthesis? DEXA analysis with the Nanos total hip arthroplasty. Z Orthop Unfall 148:398–405

    Article  CAS  PubMed  Google Scholar 

  38. Ettinger M, Ettinger P, Lerch M et al (2011) The NANOS short stem in total hip arthroplasty: a mid term follow-up. Hip Int 21:583–6

    Article  PubMed  Google Scholar 

  39. Haugan K, Husby OS, Klaksvik J, Foss OA (2012) The migration pattern of the Charnley femoral stem: a five-year follow-up RSA study in a well-functioning patient group. J Orthop Traumatol 13:137–43

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lindalen E, Dahl J, Nordsletten L et al (2012) Reverse hybrid and cemented hip replacement compared using radiostereometry and dual-energy X-ray absorptiometry: 43 hips followed for 2 years in a prospective trial. Acta Orthop 83:592–8

    Article  PubMed  PubMed Central  Google Scholar 

  41. Skoldenberg OG, Sjoo H, Kelly-Pettersson P et al (2014) Good stability but high periprosthetic bone mineral loss and late-occurring periprosthetic fractures with use of uncemented tapered femoral stems in patients with a femoral neck fracture. Acta Orthop 85:396–402

    Article  PubMed  PubMed Central  Google Scholar 

  42. Soderlund P, Dahl J, Rohrl S et al (2012) 10-year results of a new low-monomer cement: follow-up of a randomized RSA study. Acta Orthop 83:604–8

    Article  PubMed  PubMed Central  Google Scholar 

  43. Markmiller M, Weiss T, Kreuz P et al (2011) Partial weightbearing is not necessary after cementless total hip arthroplasty: a two-year prospective randomized study on 100 patients. Int Orthop 35:1139–43

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Christina Keller for processing the RSA radiographs. Smith & Nephew Orthopaedics AG (Baar, Switzerland) acted as the sponsor of this study, granting financial compensation for expenses. The company took part neither in analysis and interpretation of data nor in preparation of the manuscript. None of the authors had a further conflict of interest that may have biased the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Budde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budde, S., Seehaus, F., Schwarze, M. et al. Analysis of migration of the Nanos® short-stem hip implant within two years after surgery. International Orthopaedics (SICOT) 40, 1607–1614 (2016). https://doi.org/10.1007/s00264-015-2999-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2999-9

Keywords

Navigation