Skip to main content

Advertisement

Log in

Collagen type I coating stimulates bone regeneration and osteointegration of titanium implants in the osteopenic rat

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effects of titanium implants functionalised with collagen type I (TiColl) on bone regeneration and osteointegration in a healthy and osteopenic rat animal model.

Method

TiColl screws were implanted into the femoral condyles of healthy and osteopenic rats and compared with acid-etched titanium (Ti) screws. The osteointegration process was evaluated by a complementary approach combining microtomographic, histological, histomorphometric and biomechanical investigations at four and 12 weeks.

Results

The TiColl screw also ensured a greater mechanical stability; the push-out values for TiColl screws increased from four to 12 weeks (+28 %). The energy necessary to detach the bone from the screw was significantly higher for TiColl-functionalised screws in comparison to Ti screws (+23 %) at 12 weeks. Histomorphometric investigation revealed that total bone-to-implant contact was higher in TiColl screws in comparison to Ti screws (P < 0.05) and at epiphyseal level, increased bone-to-implant contact was found with TiColl screws in comparison to Ti screws (P < 0.05) in an ovariectomy (OVX) condition. A significant increase in the measured total bone ingrowth from four to 12 weeks was detected for both materials, but more significant for the TiColl material (P < 0.0005). Finally, bone ingrowth in the TiColl group was significantly higher (P < 0.005) in comparison to that of Ti screws in the SHAM condition at metaphyseal level at 12 weeks.

Conclusion

The present results showed that TiColl is effective in promoting implant osteointegration even in compromised bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. von Wilmowsky C, Moest T, Nkenke E, Stelzle F, Schlegel KA (2014) Implants in bone: Part I. A current overview about tissue response, surface modifications and future perspectives. Oral Maxillofac Surg 18(3):243–257

    Article  Google Scholar 

  2. Terheyden H, Lang NP, Bierbaum S, Stadlinger B (2012) Osseointegration—communication of cells. Clin Oral Implants Res 23(10):1127–1135

    Article  PubMed  Google Scholar 

  3. Ivanovski S, Hamlet S, Salvi GE, Huynh-Ba G, Bosshardt DD, Lang NP, Donos N (2011) Transcriptional profiling of osseointegration in humans. Clin Oral Implants Res 22:373–381

    Article  CAS  PubMed  Google Scholar 

  4. Yang X, Chen Q, Liu L, Song Y, Kong Q, Zeng J, Xue Y, Ren C (2013) Comparison of anterior cervical fusion by titanium mesh cage versus nano- hydroxyapatite/polyamide cage following single-level corpectomy. Int Orthop 37(12):2421–2427

    Article  PubMed Central  PubMed  Google Scholar 

  5. Franchi M, Fini M, Giavaresi G, Ottani V (2005) Peri-implant osteogenesis in health and osteoporosis. Micron 36:630–644

    Article  Google Scholar 

  6. Fini M, Giavaresi G, Salamanna F, Veronesi F, Martini L, De Mattei M, Tschon M (2011) Harmful lifestyles on orthopedic implantation surgery: a descriptive review on alcohol and tobacco use. J Bone Miner Metab 29(6):633–644

    Article  PubMed  Google Scholar 

  7. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8(1–2):136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fini M, Carpi A, Borsari V, Tschon M, Nicolini A, Sartori M, Mechanick J, Giardino R (2010) Bone remodelling, humoral networks and smart biomaterial technology for osteoporosis. Front Biosci (Schol Ed) 2:468–482

    Article  Google Scholar 

  9. Fini M, Giavaresi G, Torricelli P, Borsari V, Giardino R, Nicolini A, Carpi A (2004) Osteoporosis and biomaterial osteointegration. Biomed Pharmacother 58:487–493

    Article  CAS  PubMed  Google Scholar 

  10. Navarro M, Michiardi A, Castaño O, Planell JA (2008) Biomaterials in orthopaedics. J R Soc Interface 5(27):1137–1158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lee JH, Ogawa T (2012) The biological aging of titanium implants. Implant Dent 21(5):415–421

    Article  PubMed  Google Scholar 

  12. Morra M (2006) Biochemical modification of titanium surfaces: peptides and ECM proteins. Eur Cell Mater 12:1–15

    CAS  PubMed  Google Scholar 

  13. Ao H, Xie Y, Tan H, Wu X, Liu G, Qin A, Zheng X, Tang T (2014) Improved hMSC functions on titanium coatings by type I collagen immobilization. J Biomed Mater Res A 102(1):204-214

  14. Sverzut AT, Crippa GE, Morra M, de Oliveira PT, Beloti MM, Rosa AL (2012) Effects of type I collagen coating on titanium osseointegration: histomorphometric, cellular and molecular analyses. Biomed Mater 7(3):035007

    Article  PubMed  Google Scholar 

  15. Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W (2006) Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 27(32):5561–5571

    Article  CAS  PubMed  Google Scholar 

  16. Morra M, Cassinelli C, Cascardo G, Cahalan P, Cahalan L, Fini M, Giardino R (2003) Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies. Biomaterials 24(25):4639–4654

    Article  CAS  PubMed  Google Scholar 

  17. Morra M, Cassinelli C, Cascardo G, Mazzucco L, Borzini P, Fini M, Giavaresi G, Giardino R (2006) Collagen I-coated titanium surfaces: mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants. J Biomed Mater Res A 78(3):449–458

    Article  CAS  PubMed  Google Scholar 

  18. Morra M, Cassinelli C, Cascardo G, Bollati D, Baena RR (2011) Gene expression of markers of osteogenic differentiation of human mesenchymal cells on collagen I-modified microrough titanium surfaces. J Biomed Mater Res A 96(2):449–455

    Article  CAS  PubMed  Google Scholar 

  19. Morra M, Cassinelli C, Cascardo G, Bollati D, Rodriguez y Baena R (2010) Multifunctional implant surfaces: surface characterization and bone response to acid-etched Ti implants surface modified by fibrillar collagen I. J Biomed Mater Res A 94(1):271–279

    Article  CAS  PubMed  Google Scholar 

  20. Giavaresi G, De Terlizzi F, Gnudi S, Cadossi R, Aldini NN, Fini M, Rocca M, Ripamonti C, Brandi ML, Giardino R (2000) Discriminant capacity of quantitative ultrasound versus dual X-ray absorptiometry to determine cancellous bone loss in ovariectomized rats. Bone 26(3):297–303

    Article  CAS  PubMed  Google Scholar 

  21. Alghamdi HS, Bosco R, van den Beucken JJ, Walboomers XF, Jansen JA (2013) Osteogenicity of titanium implants coated with calcium phosphate or collagen type-I in osteoporotic rats. Biomaterials 34(15):3747–3757

    Article  CAS  PubMed  Google Scholar 

  22. Stadlinger B, Korn P, Tödtmann N et al (2013) Osseointegration of biochemically modified implants in an osteoporosis rodent model. Eur Cell Mater 25:326–340

    CAS  PubMed  Google Scholar 

  23. Vukicevic S, Oppermann H, Verbanac D et al (2014) The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int Orthop 38(3):635–647

    Article  PubMed Central  PubMed  Google Scholar 

  24. Guenther D, Oks A, Ettinger M, Liodakis E, Petri M, Krettek C, Jagodzinski M, Haasper C (2014) Enhanced migration of human bone marrow stromal cells in modified collagen hydrogels. Int Orthop 37(8):1605–1611

    Article  Google Scholar 

  25. Grassi A, Zaffagnini S, Marcheggiani Muccioli GM, Benzi A, Marcacci M (2014) Clinical outcomes and complications of a collagen meniscus implant: a systematic review. Int Orthop 38(9):1945–1953

    Article  PubMed  Google Scholar 

  26. Franz S, Rammelt S, Scharnweber D, Simon JC (2011) Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32(28):6692–6709

    Article  CAS  PubMed  Google Scholar 

  27. Francisco JI, Yu Y, Oliver RA, Walsh WR (2011) Relationship between age, skeletal site, and time post-ovariectomy on bone mineral and trabecular microarchitecture in rats. J Orthop Res 29(2):189–196

    Article  PubMed  Google Scholar 

  28. Westerlind KC, Wronski TJ, Ritman EL, Luo ZP, An KN, Bell NH, Turner RT (1997) Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain. Proc Natl Acad Sci U S A 94(8):4199–4204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Baldock PA, Need AG, Moore RJ, Durbridge TC, Morris HA (1999) Discordance between bone turnover and bone loss: effects of aging and ovariectomy in the rat. J Bone Miner Res 14(8):1442–1448

    Article  CAS  PubMed  Google Scholar 

  30. Fini M, Giavaresi G, Greggi T, Martini L, Aldini NN, Parisini P, Giardino R (2003) Biological assessment of the bone-screw interface after insertion of uncoated and hydroxyapatite-coated pedicular screws in the osteopenic sheep. J Biomed Mater Res A 66(1):176–183

    Article  CAS  PubMed  Google Scholar 

  31. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA (2008) The laboratory rat as an animal model for osteoporosis research. Comp Med 58(5):424–430

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17(3):319–336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the project “PORFESR 2007–2013 ASSE 1 ATTIVITA’ I.1.1 CREAZIONE DI TECNOPOLI PER LA RICERCA INDUSTRIALE” Piattaforma Tecnologica: Scienza della vita—Department “Rizzoli RIT-RESEARCH INNOVATION & TECNOLOGY”. This paper was partially supported by Rizzoli Orthopaedic Institute, “5 PER MILLE Project” (2012–1800 PRECL: “La rigenerazione dei tessuti dell’apparato musculoscheletrico: studi preclinici su sorgente cellulare, scaffolds e fattori legati al paziente) and by Regione Piemonte, mediante la Legge Regionale 04/06 “Sistema regionale della ricerca e innovazione”. PSO ASSE II—Competitività MISURA II.1 BANDO PER L’ACCESSO AGLI INNOVATION VOUCHER

Conflict of interest

M. Morra, C. Cassinelli and D. Bollati are employees of Nobil Bio Ricerche SRL, Portacomaro d’Asti (AT), and they declare the existence of a potential conflict of interest. The others authors declare no conflicts of interest with the materials used in the present evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Sartori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sartori, M., Giavaresi, G., Parrilli, A. et al. Collagen type I coating stimulates bone regeneration and osteointegration of titanium implants in the osteopenic rat. International Orthopaedics (SICOT) 39, 2041–2052 (2015). https://doi.org/10.1007/s00264-015-2926-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2926-0

Keywords

Navigation