Skip to main content

Advertisement

Log in

Alterations of tendons in diabetes mellitus: what are the current findings?

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

As a connective tissue, tendon connects the muscle and bone, and plays the key role in the locomotor system. Some previous studies have shown the pathological alternations in diabetic tendons, which might result in the structural and functional changes, and even accelerate the process of diabetic foot. In this review, we examined the current findings of the diabetic tendons in the form of various aspects, and summarized the clinical presentation, imaging, biomechanical, histopathological, cellular and molecular abnormalities in the diabetic tendons. The progress of diabetic tendon damage is complicated and the main hypotheses include the excessive accumulation of AGEs, the altered inflammatory response, neovascularization and insensitive neuropathy. However, the cellular and molecular mechanisms of these alterations are still ambiguous. Tendon stem/progenitor cells (TSPCs) have been discovered to play important roles in both tendon physiology and tendon pathology. Recently, we identified TSPCs from patellar tendons in our well-established diabetic rat model and found impaired tenogenic differentiation potential of these cells. We proposed a new hypothesis that the impaired cell functions of diabetic TSPCs might be the underlying cellular and molecular mechanism of the diabetic tendon alternations. These findings should be helpful to establish a better therapeutic strategy for diabetic tendon repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stitt AW, Curtis TM (2005) Advanced glycation and retinal pathology during diabetes. Pharmacol Rep 57(Suppl):156–168

    PubMed  Google Scholar 

  2. Smit AJ, Gerrits EG (2010) Skin autofluorescence as a measure of advanced glycation end product deposition: a novel risk marker in chronic kidney disease. Curr Opin Nephrol Hypertens 19:527–533

    Article  CAS  PubMed  Google Scholar 

  3. Stolzing A, Sellers D, Llewelyn O, Scutt A (2010) Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs 191:453–465. doi:10.1159/000281826

    Article  CAS  PubMed  Google Scholar 

  4. Ackermann PW (2013) Hart DA influence of comorbidities: neuropathy, vasculopathy, and diabetes on healing response quality. Adv Wound Care 2(8):410–421

    Article  Google Scholar 

  5. Miranda H, Viikari-Juntura E, Heistaro S, Heliovaara M, Riihimaki H (2005) A population study on differences in the determinants of a specific shoulder disorder versus nonspecific shoulder pain without clinical findings. Am J Epidemiol 161:847–855. doi:10.1093/aje/kwi112

    Article  PubMed  Google Scholar 

  6. Maffulli N, Longo UG, Maffulli GD, Khanna A, Denaro V (2011) Achilles tendon ruptures in diabetic patients. Arch Orthop Trauma Surg 131:33–38. doi:10.1007/s00402-010-1097-0

    Article  PubMed  Google Scholar 

  7. Sukenik S, Weitzman S, Buskila D, Eyal A, Gross J, Horowitz J (1987) Limited joint mobility and other rheumatological manifestations in diabetic patients. Diabete Metab 13:187–192

    CAS  PubMed  Google Scholar 

  8. Batista F, Nery C, Pinzur M, Monteiro AC, de Souza EF, Felippe FH, Alcantara MC, Campos RS (2008) Achilles tendinopathy in diabetes mellitus. Foot Ankle Int 29:498–501. doi:10.3113/fai.2008.0498

    Article  PubMed  Google Scholar 

  9. Aydeniz A, Gursoy S, Guney E (2008) Which musculoskeletal complications are most frequently seen in type 2 diabetes mellitus? J Int Med Res 36:505–511

    Article  CAS  PubMed  Google Scholar 

  10. Abate M, Schiavone C, Pelotti P, Salini V (2010) Limited joint mobility in diabetes and ageing: recent advances in pathogenesis and therapy. Int J Immunopathol Pharmacol 23(4):997–1003

  11. de Oliveira RR, Lemos A, de Castro Silveira PV, da Silva RJ, de Moraes SR (2011) Alterations of tendons in patients with diabetes mellitus: a systematic review. Diabet Med 28:886--895. doi:10.1111/j.1464-5491.2010.03197.x

  12. Abate M, Salini V, Antinolfi P, Schiavone C (2010) Ultrasound morphology of the Achilles in asymptomatic patients with and without diabetes. Foot Ankle Int 35:44–49

  13. Ramchurn N, Mashamba C, Leitch E, Arutchelvam V, Narayanan K, Weaver J, Hamilton J, Heycock C, Saravanan V, Kelly C (2009) Upper limb musculoskeletal abnormalities and poor metabolic control in diabetes. Eur J Intern Med 20:718–721

    Article  PubMed  Google Scholar 

  14. Ando A, Sugaya H, Hagiwara Y, Takahashi N, Watanabe T, Kanazawa K, Itoi E (2013) Identification of prognostic factors for the nonoperative treatment of stiff shoulder. Int Orthop 37:859–864. doi:10.1007/s00264-013-1859-8

    Article  PubMed Central  PubMed  Google Scholar 

  15. Cole A, Gill TK, Shanahan EM, Phillips P, Taylor AW, Hill CL (2009) Is diabetes associated with shoulder pain or stiffness? Results from a population based study. J Rheumatol 36:371–377

    Article  PubMed  Google Scholar 

  16. Namdari S, Green A (2010) Range of motion limitation after rotator cuff repair. J Should Elb Surg 19:290–296. doi:10.1016/j.jse.2009.07.009

    Article  Google Scholar 

  17. Clement ND, Hallett A, MacDonald D, Howie C, McBirnie J (2010) Does diabetes affect outcome after arthroscopic repair of the rotator cuff? J Bone Joint Surg (Br) 92:1112–1117. doi:10.1302/0301-620x.92b8.23571

    Article  CAS  Google Scholar 

  18. Bruggeman NB, Turner NS, Dahm DL, Voll AE, Hoskin TL, Jacofsky DJ, Haidukewych GJ (2004) Wound complications after open Achilles tendon repair: an analysis of risk factors. Clin Orthop Relat Res 427:63–66

    Article  PubMed  Google Scholar 

  19. Pascual Huerta J, Garcia JM, Matamoros EC, Matamoros JC, Martinez TD (2008) Relationship of body mass index, ankle dorsiflexion, and foot pronation on plantar fascia thickness in healthy, asymptomatic subjects. J Am Podiatr Med Assoc 98:379–385

    Article  PubMed  Google Scholar 

  20. Cronin NJ, Peltonen J, Ishikawa M, Komi PV, Avela J, Sinkjaer T, Voigt M (2010) Achilles tendon length changes during walking in long-term diabetes patients. Clin Biomech 25:476–482

    Article  Google Scholar 

  21. Giacomozzi C, D’Ambrogi E, Uccioli L, Macellari V (2005) Does the thickening of Achilles tendon and plantar fascia contribute to the alteration of diabetic foot loading? Clin Biomech 20:532–539. doi:10.1016/j.clinbiomech.2005.01.011, Bristol, Avon

    Article  CAS  Google Scholar 

  22. Akturk M, Ozdemir A, Maral I, Yetkin I, Arslan M (2007) Evaluation of Achilles tendon thickening in type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes: Off J Ger Soc Endocrinol Ger Diabetes Asso 115:92–96. doi:10.1055/s-2007-955097

    Article  CAS  Google Scholar 

  23. Papanas N, Courcoutsakis N, Papatheodorou K, Daskalogiannakis G, Maltezos E, Prassopoulos P (2009) Achilles tendon volume in type 2 diabetic patients with or without peripheral neuropathy: MRI study. Exp Clin Endocrinol Diabetes: Off J Ger Soc Endocrinol Ger Diabetes Assoc 117:645–648. doi:10.1055/s-0029-1224121

    Article  CAS  Google Scholar 

  24. Abate M, Schiavone C, Pelotti P, Salini V (2010) Limited joint mobility in diabetes and ageing: recent advances in pathogenesis and therapy. Int J Immunopathol Pharmacol 23(4):997–1003

  25. Altinel L, Kose KC, Degirmenci B, Petik B, Acarturk G, Colbay M (2007) The midterm effects of diabetes mellitus on quadriceps and patellar tendons in patients with knee arthrosis: a comparative radiological study. J Diabetes Complicat 21:392–396. doi:10.1016/j.jdiacomp.2006.07.003

    Article  PubMed  Google Scholar 

  26. Fox AJ, Bedi A, Deng XH, Ying L, Harris PE, Warren RF, Rodeo SA (2011) Diabetes mellitus alters the mechanical properties of the native tendon in an experimental rat model. Orthop Res: Off Pub Orthop Res Soc 29:880–885. doi:10.1002/jor.21327

    Article  Google Scholar 

  27. de Oliveira RR, de Lira KD, Silveira PV, Coutinho MP, Medeiros MN, Teixeira MF, de Moraes SR (2011) Mechanical properties of Achilles tendon in rats induced to experimental diabetes. Ann Biomed Eng 39:1528–1534

  28. Reddy GK (2003) Glucose-mediated in vitro glycation modulates biomechanical integrity of the soft tissues but not hard tissues. J Orthop Res 21:738–743. doi:10.1016/s0736-0266(03)00006-8

    Article  PubMed  Google Scholar 

  29. de Oliveira RR, Bezerra MA, de Lira KD, Novaes KA, Teixeira MF, Chaves Cde C, Moraes SR (2012) Aerobic physical training restores biomechanical properties of Achilles tendon in rats chemically induced to diabetes mellitus. J Diabetes Complicat 26:163–168. doi:10.1016/j.jdiacomp.2012.03.017

    Article  PubMed  Google Scholar 

  30. Bedi A, Fox AJ, Harris PE, Deng XH, Ying L, Warren RF, Rodeo SA (2010) Diabetes mellitus impairs tendon-bone healing after rotator cuff repair. J Should Elb Surg Am Should Elb Surg 19:978–988. doi:10.1016/j.jse.2009.11.045

    Article  Google Scholar 

  31. Ahmed AS, Schizas N, Li J, Ahmed M, Ostenson CG, Salo P, Hewitt C, Hart DA, Ackermann PW (2012) Type 2 diabetes impairs tendon repair after injury in a rat model. J Appl Physiol 113:1784–1791. doi:10.1152/japplphysiol.00767.2012, Bethesda, Md: 1985

    Article  CAS  PubMed  Google Scholar 

  32. Lehner C, Gehwolf R, Wagner A, Resch H, Hirzinger C, Augat P, Stephan D, Aigner L, Rivera FJ, Bauer HC, Tempfer H (2012) Tendons from non-diabetic humans and rats harbor a population of insulin-producing, pancreatic beta cell-like cells. Horm Metab Res 44:506–510. doi:10.1055/s-0032-1312672

    Article  CAS  PubMed  Google Scholar 

  33. David MA, Jones KH, Inzana JA, Zuscik MJ, Awad HA, Mooney RA (2014) Tendon repair is compromised in a high fat diet-induced mouse model of obesity and type 2 diabetes. PLoS One 9:e91234

  34. Yoshimasa Sakoma TF, Ozaki T (2014) Pentosidine deposition affects biomechanical properties of Achilles tendon in diabetic rats. Orthop Muscul Syst 3:150. doi:10.4172/2161-0533.1000150

    Google Scholar 

  35. Vazzana N, Santilli F, Cuccurullo C, Davi G (2009) Soluble forms of RAGE in internal medicine. Intern Emerg Med 4:389–401. doi:10.1007/s11739-009-0300-1

    Article  PubMed  Google Scholar 

  36. Burner T, Gohr C, Mitton-Fitzgerald E, Rosenthal AK (2012) Hyperglycemia reduces proteoglycan levels in tendons. Connect Tissue Res 53:535–541

    Article  CAS  PubMed  Google Scholar 

  37. de Oliveira RR, Martins CS, Rocha YR, Braga AB, Mattos RM, Hecht F, Brito GA, Nasciutti LE (2013) Experimental diabetes induces structural, inflammatory and vascular changes of Achilles tendons. PLoS One 8:e74942. doi:10.1371/journal.pone.0074942

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ji J, Wang Z, Shi D, Gao X, Jiang Q (2010) Pathologic changes of Achilles tendon in leptin-deficient mice. Rheumatol Int 30:489–493. doi:10.1007/s00296-009-1001-9

    Article  PubMed  Google Scholar 

  39. Kameyama M, Chen KR, Mukai K, Shimada A, Atsumi Y, Yanagimoto S (2013) Histopathological characteristics of stenosing flexor tenosynovitis in diabetic patients and possible associations with diabetes-related variables. J Hand Surg [Am] 38:1331–1339

    Article  Google Scholar 

  40. Rui YF, Lui PP, Wong YM, Tan Q, Chan KM (2013) Altered fate of tendon-derived stem cells isolated from a failed tendon-healing animal model of tendinopathy. Stem Cells Dev 22:1076–1085. doi:10.1089/scd.2012.0555

  41. Chbinou N, Frenette J (2004) Insulin-dependent diabetes impairs the inflammatory response and delays angiogenesis following Achilles tendon injury. Am J Physiol Regul Integr Comp Physiol 286:R952–957. doi:10.11522/ajpregu.00536.2003

    Article  CAS  PubMed  Google Scholar 

  42. Bring DK, Kreicbergs A, Renstrom PA, Ackermann PW (2007) Physical activity modulates nerve plasticity and stimulates repair after Achilles tendon rupture. J Orthop Res 25:164–172

    Article  PubMed  Google Scholar 

  43. Abate M, Schiavone C, Salini S (2012) Neoangiogenesis is reduced in chronic tendinopathies of type 2 diabetic patients. Int J Immunopathol Pharmacol 25:757–761

    CAS  PubMed  Google Scholar 

  44. Scott A, Lian O, Bahr R, Hart DA, Duronio V, Khan KM (2008) Increased mast cell numbers in human patellar tendinosis: correlation with symptom duration and vascular hyperplasia. Br J Sports Med 42:753–757

    Article  CAS  PubMed  Google Scholar 

  45. Nakama LH, King KB, Abrahamsson S, Rempel DM (2006) VEGF, VEGFR-1, and CTGF cell densities in tendon are increased with cyclical loading: an in vivo tendinopathy model. J Orthop Res 24:393–400

    Article  CAS  PubMed  Google Scholar 

  46. Stein V, Laprell H, Tinnemeyer S, Petersen W (2000) Quantitative assessment of intravascular volume of the human Achilles tendon. Acta Orthop Scand 71:60–63

    Article  CAS  PubMed  Google Scholar 

  47. Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605

    Article  CAS  PubMed  Google Scholar 

  48. Ignotz RA, Massague J (1986) Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261:4337–4345

    CAS  PubMed  Google Scholar 

  49. Bertolini A, Ottani A, Sandrini M (2002) Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks. Curr Med Chem 9:1033–1043

    Article  CAS  PubMed  Google Scholar 

  50. Ferreira E, Porter RM, Wehling N, O’Sullivan RP, Liu F, Boskey A, Estok DM, Harris MB, Vrahas MS, Evans CH, Wells JW (2013) Inflammatory cytokines induce a unique mineralizing phenotype in mesenchymal stem cells derived from human bone marrow. J Biol Chem 288:29494–29505. doi:10.1074/jbc.M113.471268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Xiao H, Cai G, Liu M (2007) Fe2 + −catalyzed non-enzymatic glycosylation alters collagen conformation during AGE-collagen formation in vitro. Arch Biochem Biophys 468:183–192

    Article  CAS  PubMed  Google Scholar 

  52. Franke S, Sommer M, Ruster C, Bondeva T, Marticke J, Hofmann G, Hein G, Wolf G (2009) Advanced glycation end products induce cell cycle arrest and proinflammatory changes in osteoarthritic fibroblast-like synovial cells. Arthritis Res Ther 11:7

    Article  Google Scholar 

  53. Huijberts MS, Schaper NC, Schalkwijk CG (2008) Advanced glycation end products and diabetic foot disease. Diabetes Metab Res Rev 24:861

    Article  Google Scholar 

  54. Sakoma YFT, Ozaki T (2014) Pentosidine deposition affects biomechanical properties of Achilles tendon in diabetic rats. Orthop Muscul Syst 3:150

    Google Scholar 

  55. Sharir A, Zelzer E (2011) Tendon homeostasis: the right pull. Curr Biol 21:025

    Article  Google Scholar 

  56. Leadbetter WB (1992) Cell-matrix response in tendon injury. Clin Sports Med 11:533–578

    CAS  PubMed  Google Scholar 

  57. Liu JQ, Liu HC, Wang Y, Feng Y, Gao H (2011) The biological effect of high glucose on human periodontal ligament fibroblast. Shanghai Kou Qiang Yi Xue 20:225–229

    CAS  PubMed  Google Scholar 

  58. Higuchi C, Sanaka T, Sato T, Omata M, Watanabe M, Mine S, Inuzuka N, Nihei H (1997) The effect of glucose on the proliferation of peritoneal fibroblasts. Adv Perit Dial 13:253–256

    CAS  PubMed  Google Scholar 

  59. Park EY, Park JB (2013) High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells. Int Orthop 37:2507–2514. doi:10.1007/s00264-013-2037-8

    Article  PubMed Central  PubMed  Google Scholar 

  60. Park EY, Park JB (2013) Dose- and time-dependent effect of high glucose concentration on viability of notochordal cells and expression of matrix degrading and fibrotic enzymes. Int Orthop 37:1179–1186. doi:10.1007/s00264-013-1836-2

    Article  PubMed Central  PubMed  Google Scholar 

  61. Tsai WC, Liang FC, Cheng JW, Lin LP, Chang SC, Chen HH, Pang JH (2013) High glucose concentration up-regulates the expression of matrix metalloproteinase-9 and −13 in tendon cells. BMC Musculoskelet Disord 14:255. doi:10.1186/1471-2474-14-255

    Article  PubMed Central  PubMed  Google Scholar 

  62. Park JS, Park JB, Park IJ, Park EY (2014) Accelerated premature stress-induced senescence of young annulus fibrosus cells of rats by high glucose-induced oxidative stress. Int Orthop 38:1311–1320. doi:10.1007/s00264-014-2296-z

    Article  PubMed Central  PubMed  Google Scholar 

  63. Poulsen RC, Knowles HJ, Carr AJ, Hulley PA (2014) Cell differentiation versus cell death: extracellular glucose is a key determinant of cell fate following oxidative stress exposure. Cell Death Dis 20:52

    Google Scholar 

  64. Rui YF, Lui PP, Li G, Fu SC, Lee YW, Chan KM (2010) Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Eng Part A 16:1549–1558. doi:10.1089/ten.TEA.2009.0529

  65. Ni M, Lui PP, Rui YF, Lee YW, Lee YW, Tan Q, Wong YM, Kong SK, Lau PM, Li G, Chan KM (2012) Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. J Orthop Res 30:613–619. doi:10.1002/jor.21559

    Article  CAS  PubMed  Google Scholar 

  66. Kojima H, Fujimiya M, Terashima T, Kimura H, Chan L (2006) Extrapancreatic proinsulin/insulin-expressing cells in diabetes mellitus: is history repeating itself? Endocr J 53:715–722

    Article  CAS  PubMed  Google Scholar 

  67. Rothan HA, Suhaeb AM, Kamarul T (2013) Recombinant human adiponectin as a potential protein for treating diabetic tendinopathy promotes tenocyte progenitor cells proliferation and tenogenic differentiation in vitro. Int J Med Sci 10:1899–1906. doi:10.7150/ijms.6774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14:2123–2133

    Article  CAS  PubMed  Google Scholar 

  69. Sharma P, Maffulli N (2005) Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am 87:187–202

    Article  PubMed  Google Scholar 

  70. Ireland D, Harrall R, Curry V, Holloway G, Hackney R, Hazleman B, Riley G (2001) Multiple changes in gene expression in chronic human Achilles tendinopathy. Matrix Biol 20:159–169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81201422 and No. 81172177), China Postdoctoral Science Foundation (No. 2012 M520983), National Student Innovation Training Program of China (No. 1210286090), Jiangsu Province Science Foundation for Youths (No. BK2012334), Innovative Foundation of Southeast University (No. 3290002401) and Shenzhen Science and Technology Bureau Grant (JCYJ20130401171935811). These works were also supported in part by the National Basic Science and Development Programme (973 Programme, 2012CB518105) and SMART program seed funding, Institute of Innovative Medicine, The Chinese University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-feng Rui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Rui, Yf., Li, G. et al. Alterations of tendons in diabetes mellitus: what are the current findings?. International Orthopaedics (SICOT) 39, 1465–1473 (2015). https://doi.org/10.1007/s00264-015-2775-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2775-x

Keywords

Navigation