Skip to main content

Advertisement

Log in

Bone morphogenetic protein-7 enhances bone-tendon integration in a murine in vitro co-culture model

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Bone-tendon healing following anterior cruciate ligament reconstruction is reportedly enhanced by bone morphogenetic protein (BMP)-7. To improve our understanding of the underlying biologic processes, we examined the effects of BMP-7 on region-specific gene expression in vitro.

Methods

A murine in vitro co-culture model simulating the osteoblast, interface and fibroblast regions was established. The dose- and time-dependent region-specific effects of BMP-7 exposure on gene expression of Alpl, Bglap, Col1a1, Runx2 and Spp1 were analysed by quantitative PCR.

Results

At the osteoblast region, BMP-7 significantly increased Alp, Bglap, Col1a1, and Runx2 expression, while Spp1 expression was suppressed. At the interface region, BMP-7 exposure resulted in a trend towards increased expression rates of Alpl and Col1a1, whereas Bglap (P < 0.001) and Runx2 (P < 0.01) were significantly upregulated without any detectable effect on Spp1 expression. At the fibroblast region, BMP-7 increased Alpl (P < 0.001), Bglap (P < 0.001) and Runx2 (P < 0.001) expression, but no significant effects were seen on Col1a1 or Spp1. Exposure to BMP-7 (100 ng/ml) had its most pronounced biologic impact on day ten.

Conclusion

BMP-7 stimulation showed beneficial region-specific effects on bone-tendon healing in vitro, such as enhanced expression of parameters for ossification and fibroblast transdifferentiation, both key processes during successful graft integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR Jr, Paletta GA Jr (2014) Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med 42:2363–2370. doi:10.1177/0363546514542796

    Article  PubMed  Google Scholar 

  2. Ryan J, Magnussen RA, Cox CL, Hurbanek JG, Flanigan DC, Kaeding CC (2014) ACL reconstruction: do outcomes differ by sex? A systematic review. J Bone Joint Surg Am 96:507–512. doi:10.2106/JBJS.M.00299

    Article  PubMed  Google Scholar 

  3. Whitehead TS (2013) Failure of anterior cruciate ligament reconstruction. Clin Sports Med 32:177–204. doi:10.1016/j.csm.2012.08.015

    Article  PubMed  Google Scholar 

  4. Deehan DJ, Cawston TE (2005) The biology of integration of the anterior cruciate ligament. J Bone Joint Surg (Br) 87:889–895. doi:10.1302/0301-620X.87B7.16038

    Article  CAS  Google Scholar 

  5. Ronga M, Fagetti A, Canton G, Paiusco E, Surace MF, Cherubino P (2013) Clinical applications of growth factors in bone injuries: experience with BMPs. Injury 44:S34–39. doi:10.1016/S0020-1383(13)70008-1

    Article  PubMed  Google Scholar 

  6. Vukicevic S, Oppermann H, Verbanac D et al (2014) The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int Orthop 38:635–647. doi:10.1007/s00264-013-2201-1

    Article  PubMed Central  PubMed  Google Scholar 

  7. Eliasson P, Fahlgren A, Aspenberg P (2008) Mechanical load and BMP signaling during tendon repair: a role for follistatin? Clin Orthop Relat Res 466:1592–1597. doi:10.1007/s11999-008-0253-0

    Article  PubMed Central  PubMed  Google Scholar 

  8. Yamada M, Akeda K, Asanuma K, Thonar EJ, An HS, Uchida A, Masuda K (2008) Effect of osteogenic protein-1 on the matrix metabolism of bovine tendon cells. J Orthop Res 26:42–48. doi:10.1002/jor.20474

    Article  CAS  PubMed  Google Scholar 

  9. Yu Y, Bliss JP, Bruce WJ, Walsh WR (2007) Bone morphogenetic proteins and Smad expression in ovine tendon-bone healing. Arthroscopy 23:205–210. doi:10.1016/j.arthro.2006.08.023

    Article  PubMed  Google Scholar 

  10. Wang IE, Shan J, Choi R, Oh S, Kepler CK, Chen FH, Lu HH (2007) Role of osteoblast-fibroblast interactions in the formation of the ligament-to-bone interface. J Orthop Res 25:1609–1620. doi:10.1002/jor.20475

    Article  CAS  PubMed  Google Scholar 

  11. Menetrey J, Duthon VB, Laumonier T, Fritschy D (2008) "Biological failure" of the anterior cruciate ligament graft. Knee Surg Sports Traumatol Arthrosc 16:224–231. doi:10.1007/s00167-007-0474-x

    Article  CAS  PubMed  Google Scholar 

  12. Lovric V, Chen D, Yu Y, Oliver RA, Genin F, Walsh WR (2012) Effects of demineralized bone matrix on tendon-bone healing in an intra-articular rodent model. Am J Sports Med 40:2365–2374. doi:10.1177/0363546512457648

    Article  PubMed  Google Scholar 

  13. Hjorthaug GA, Madsen JE, Nordsletten L, Reinholt FP, Steen H, Dimmen S (2015) Tendon to bone tunnel healing-A study on the time-dependent changes in biomechanics, bone remodeling, and histology in a rat model. J Orthop Res 33(2):216–223. doi:10.1002/jor.22756

    Article  PubMed  Google Scholar 

  14. Kohno T, Ishibashi Y, Tsuda E, Kusumi T, Tanaka M, Toh S (2007) Immunohistochemical demonstration of growth factors at the tendon-bone interface in anterior cruciate ligament reconstruction using a rabbit model. J Orthop Sci 12:67–73. doi:10.1007/s00776-006-1088-8

    Article  CAS  PubMed  Google Scholar 

  15. Hashimoto Y, Yoshida G, Toyoda H, Takaoka K (2007) Generation of tendon-to-bone interface "enthesis" with use of recombinant BMP-2 in a rabbit model. J Orthop Res 25:1415–1424. doi:10.1002/jor.20447

    Article  PubMed  Google Scholar 

  16. Martinek V, Latterman C, Usas A, Abramowitch S, Woo SL, Fu FH, Huard J (2002) Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J Bone Joint Surg Am 84-A:1123–1131

    PubMed  Google Scholar 

  17. Mihelic R, Pecina M, Jelic M, Zoricic S, Kusec V, Simic P, Bobinac D, Lah B, Legovic D, Vukicevic S (2004) Bone morphogenetic protein-7 (osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. Am J Sports Med 32(7):1619–1625

    Article  PubMed  Google Scholar 

  18. Nicklin S, Morris H, Yu Y, Harrison J, Walsh WR (2000) OP-1 augmentation of tendon-bone healing in an ovine ACL reconstruction. Trans Orthop Res Soc 25:155

    Google Scholar 

  19. Makino T, Hak DJ, Hazelwood SJ, Curtiss S, Reddi AH (2005) Prevention of atrophic nonunion development by recombinant human bone morphogenetic protein-7. J Orthop Res 23:632–638. doi:10.1016/j.orthres.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  20. Forslund C, Aspenberg P (1998) OP-1 has more effect than mechanical signals in the control of tissue differentiation in healing rat tendons. Acta Orthop Scand 69:622–626

    Article  CAS  PubMed  Google Scholar 

  21. Klatte-Schulz F, Pauly S, Scheibel M, Greiner S, Gerhardt C, Hartwig J, Schmidmaier G, Wildemann B (2013) Characteristics and stimulation potential with BMP-2 and BMP-7 of tenocyte-like cells isolated from the rotator cuff of female donors. PLoS One 8:e67209. doi:10.1371/journal.pone.0067209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yeh LC, Tsai AD, Lee JC (2008) Bone morphogenetic protein-7 regulates differentially the mRNA expression of bone morphogenetic proteins and their receptors in rat Achilles and patellar tendon cell cultures. J Cell Biochem 104:2107–2122. doi:10.1002/jcb.21768

    Article  CAS  PubMed  Google Scholar 

  23. Sodek J, Chen J, Nagata T, Kasugai S, Todescan R Jr, Li IW, Kim RH (1995) Regulation of osteopontin expression in osteoblasts. Ann NY Acad Sci 760:223–241

    Article  CAS  PubMed  Google Scholar 

  24. Myllyla RM, Haapasaari KM, Lehenkari P, Tuukkanen J (2014) Bone morphogenetic proteins 4 and 2/7 induce osteogenic differentiation of mouse skin derived fibroblast and dermal papilla cells. Cell Tissue Res 355:463–470. doi:10.1007/s00441-013-1745-0

    Article  CAS  PubMed  Google Scholar 

  25. Umehara K, Iimura T, Sakamoto K, Lin Z, Kasugai S, Igarashi Y, Yamaguchi A (2012) Canine oral mucosal fibroblasts differentiate into osteoblastic cells in response to BMP-2. Anat Rec 295:1327–1335. doi:10.1002/ar.22510

    Article  CAS  Google Scholar 

  26. Timothy R, Arnett BH (1998) Methods in bone biology. Spinger Science & Business Media, New York. doi:10.1007/b102333

Download references

Acknowledgments

The study was funded by University Hospitals Giessen and Marburg, according to §2 passage 3 (research funding) of the interhospital cooperation contract.

The authors thank Dr. René Zimmermann and Dr. Nahed El-Najjar for their contributions to the conception of the study, Mrs. Pia Janssen for her invaluable technical assistance and Mrs. Claudia Krappen (Freistil-Design, Geldern, Germany) for graphic design.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Schwarting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarting, T., Benölken, M., Ruchholtz, S. et al. Bone morphogenetic protein-7 enhances bone-tendon integration in a murine in vitro co-culture model. International Orthopaedics (SICOT) 39, 799–805 (2015). https://doi.org/10.1007/s00264-015-2688-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2688-8

Keywords

Navigation