Skip to main content

Results of total hip arthroplasty using a bionic hip stem



The trabecular-orientated bionic hip stem was designed to mimic the natural force transmission through the femur in total hip arthroplasty, resulting in supposedly longer prosthesis survivability. The aim of this study was to compare the second-generation bionic hip stem to a standard uncemented hip stem.


A group of 18 patients (21 hips) who underwent total hip arthroplasty with a bionic stem (bionic group) was compared with a historic group of 12 patients (12 hips) treated with standard anatomic hip stem (control group). During the first year after the procedure, the densitometric measurements of the bone around the prosthesis were taken. Radiographic and clinical assessments were additionally performed preoperatively and at the three month, six month, one year and three year follow-ups in the bionic group.


In the bionic group, one patient was revised for aseptic loosening and 16 patients (19 hips) were available to the final follow-up. A significant decrease of bone mineral density was found in Gruen zones 3, 4 and 5 in the bionic group, and in zone 7 in both groups. The bionic group had a significantly higher bone mineral density in Gruen zone 1 at the one year follow-up. At the final follow-up, all prostheses were radiologically stable in both groups.


Provided that a good implant position is achieved, comparable short-term results can be obtained using a bionic stem. Still, a decrease of bone mineral density in Gruen zone 7 occurred in both groups. Further studies are required to determine survivability of the bionic stem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Grochola LF, Habermann B, Mastrodomenico N, Kurth A (2008) Comparison of periprosthetic bone remodeling after implantation of anatomic and straight stem prostheses in total hip arthroplasty. Arch Orthop Trauma Surg 128:383–392

    Article  CAS  PubMed  Google Scholar 

  2. Rahmy AI, Gosens T, Blake GM, Tonino A, Fogelman I (2004) Periprosthetic bone remodeling of two types of uncemented femoral implant with proximal hydroxyapatite coating: a 3-year follow up study addressing the influence of prosthesis design and preoperative bone density on periprosthetic bone loss. Osteoporos Int 15:281–289

    Article  CAS  PubMed  Google Scholar 

  3. Nysted M, Benum P, Klaksvik J, Foss O, Aamodt A (2011) Periprosthetic bone loss after insertion of an uncemented, customized femoral stem and an uncemented anatomical stem. A randomized DXA study with 5-year follow-up. Acta Orthop 82:410–416. doi:10.3109/17453674.2011.588860

    Article  PubMed Central  PubMed  Google Scholar 

  4. Karachalios T, Tsatsaronis C, Efraimis G, Papadelis P, Lyritis G, Diakoumopoulos G (2004) The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty: a 10-year, prospective, randomized study. J Arthroplasty 19:469–475

    Article  PubMed  Google Scholar 

  5. Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC (2009) Biology of implant osseointegration. J Musculoskelet Neuronal Interact 9:61–71

    CAS  PubMed  Google Scholar 

  6. Knusten AR, Ebramzadeh E, Longjohn DB, Sangiorgio SN (2014) Systematic analysis of bisphosphonate intervention on periprosthetic BMD as a function of stem design. J Arthroplasty 29:1292–1297. doi:10.1016/j.arth.2014.01.015

    Article  PubMed  Google Scholar 

  7. Copf F, Holz U, Vesel S (1983) Eine biomechanische Lösung zur dauerhaften Verankerung künstlicher Hüftgelenkspfannen. Z Orthop Unfall 121:265–270

    CAS  Google Scholar 

  8. Copf F, Czarnetzki A (1989) Two-membrane system in the caput femoris and the distal femoral condyles. Acta Anat (Basel) 136:255–256

    Article  CAS  Google Scholar 

  9. Copf F, Holz U (1991) Das in der Spongiosastruktur verankerte Hüftgeleks-Endoprothesen-Sistem. Akt Chir 26:301–308

    Google Scholar 

  10. Argyzis J, Faust G, Laxander A (1994) Biomechanishe Grundlagen. In: Copf F, Holz U (eds) Knochen als dynammisches Prinzip. Thieme Verlag, Stuttgart, pp 34–36

    Google Scholar 

  11. Wirth T, Syed Ali MM, Wilke A, Griss P (2000) Loosening of a fenestrated femoral prosthesis: a case report with histomorphologic analysis. J Arthroplasty 15:802–805

    Article  CAS  PubMed  Google Scholar 

  12. Marchetti ME, Steinberg GG, Greene JM, Jenis LG, Baran DT (1996) A prospective study of proximal femur bone mass following cemented and uncemented hip arthroplasty. J Bone Miner Res 11:1033–1039

    Article  CAS  PubMed  Google Scholar 

  13. Brodner W, Bitzan P, Lomoschitz F, Krepler P, Jankovsky R, Lehr S, Kainberger F, Gottsauner-Wolf F (2004) Changes in bone mineral density in the proximal femur after cementless total hip arthroplasty. A five-year longitudinal study. J Bone Joint Surg (Br) 86:20–26

    CAS  Google Scholar 

  14. Jahnke A, Engl S, Altmeyer C, Jakubowitz E, Seeger JB, Rickert M, Ishaque BA (2014) Changes of periprosthetic bone density after a cementless short hip stem: clinical and radiological analysis. Int Orthop 38(10):2045–2050. doi:10.1007/s00264-014-2370-6

    Article  PubMed  Google Scholar 

  15. Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27

    PubMed  Google Scholar 

  16. Oh I, Harris WH (1978) Proximal strain distribution in the loaded femur. An in vitro comparison of the distributions in the intact femur and after insertion of different hip-replacement femoral components. J Bone Joint Surg Am 60:75–85

    CAS  PubMed  Google Scholar 

  17. Johnston RC, Fitzgerald RH Jr, Harris WH, Poss R, Müller ME, Sledge CB (1990) Clinical and radiographic evaluation of total hip replacement. A standard system of terminology for reporting results. J Bone Joint Surg Am 72:161–168

    CAS  PubMed  Google Scholar 

  18. Kobayashi A, Donnelly WJ, Scott G, Freeman MA (1997) Early radiological observations may predict the long-term survival of femoral hip prostheses. J Bone Joint Surg (Br) 79:583–589

    Article  CAS  Google Scholar 

  19. Venesmaa PK, Kröger HP, Miettinen HJ, Jurvelin JS, Suomalainen OT, Alhava EM (2001) Monitoring of periprosthetic BMD after uncemented total hip arthroplasty with dual-energy X-ray absorptiometry—a 3-year follow-up study. J Bone Miner Res 16:1056–1061

    Article  CAS  PubMed  Google Scholar 

  20. Bishop NE, Burton A, Maheson M, Morlock MM (2010) Biomechanics of short hip endoprostheses-the risk of bone failure increases with decreasing implant size. Clin Biomech (Bristol, Avon) 25:666–674. doi:10.1016/j.clinbiomech.2010.04.013

    Article  Google Scholar 

  21. Hamadouche M, Jahnke A, Scemama C, Ishaque BA, Rickert M, Kerboull L, Jakubowitz E (2014) Length of clinically proven cemented hip stems: State of the art or subject to improvement? Int Orthop. doi:10.1007/s00264-014-2522-8

  22. Martini F, Schmidt B, Sell S (1997) Validity and reproducibility of osteodensitometric DEXA-measurements following total hip endoprosthesis. Z Orthop Ihre Grenzgeb 135:35–39

    Article  CAS  PubMed  Google Scholar 

  23. Kim YH, Kim JS, Joo JH, Park JW (2012) A prospective short-term outcome study of a short metaphyseal fitting total hip arthroplasty. J Arthroplasty 27:88–94. doi:10.1016/j.arth.2011.02.008

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Samo K. Fokter.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fokter, S.K., Sarler, T., Strahovnik, A. et al. Results of total hip arthroplasty using a bionic hip stem. International Orthopaedics (SICOT) 39, 1065–1071 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Total hip arthroplasty
  • Bionic hip
  • Densitometry
  • Bone mineral density
  • Periprosthetic bone loss