Abstract
Purpose
Because published studies on the accuracy achieved with patient-specific guides during total knee arthroplasty (TKA) contradict each other, this systematic review and meta-analysis sought to compare radiological TKA outcomes when patient-specific cutting blocks (PSCB) were used to the outcomes when standard manual instrumentation was used.
Methods
The meta-analysis was implemented according to PRISMA Statement Criteria. The primary endpoint was the hip-knee-ankle (HKA) angle, which represents the leg’s mechanical axis. The accuracy of component placement in the coronal and sagittal planes, and the accuracy of femoral component rotation were also compiled. After testing for publication bias and heterogeneity across studies, data were aggregated random-effects modeling when necessary.
Results
Fifteen articles were included: 916 total knee arthroplasty cases in the PSCB group and 998 in the MI group. The mechanical axis did not differ between the two groups (weighted mean difference 0.07°; 95 % CI, -0.5° to 0.65°; p = 0.8). Risk ratio analysis revealed no protective effect of using PSCB relative to the appearance of HKA angle outliers (RR = 0.88; 95 % CI, 0.68–1.13; p = 0.3). There was a trend towards a protective effect with PSCB for the risk of femoral component outliers, but the opposite was observed for the tibial component. The implantation procedure was stopped in 30 cases because the surgeon-authors found excessive discrepancies between the intra-operative observations and the pre-operative plan.
Conclusions
This meta-analysis found no evidence that using patient-specific cutting blocks provides superior accuracy to using manual instrumentation during TKA.
This is a preview of subscription content, access via your institution.










References
Insall JN, Binazzi R, Soudry M, Mestriner LA (1985) Total knee arthroplasty. Clin Orthop Relat Res 192:13–22
Ritter MA, Faris PM, Keating EM, Meding JB (1994) Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res 299:153–156
Lotke PA, Ecker ML (1977) Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg Am 59:77–79
Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM (2002) Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res 404:7–13
Bargren JH, Blaha JD, Freeman MA (1983) Alignment in total knee arthroplasty. Correlated biomechanical and clinical observations. Clin Orthop Relat Res 173:178–183
Harrysson OL, Hosni YA, Nayfeh JF (2007) Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet Disord 8:91
Nunley RM, Ellison BS, Zhu J, Ruh EL, Howell SM, Barrack RL (2012) Do patient-specific guides improve coronal alignment in total knee arthroplasty? Clin Orthop Relat Res 470:1242
Lombardi AV Jr, Berend KR, Adams JB (2008) Patient-specific approach in total knee arthroplasty. Orthopedics 31:927–930
Klatt BA, Goyal N, Austin MS, Hozack WJ (2008) Custom-fit total knee arthroplasty (OtisKnee) results in malalignment. J Arthroplasty 23:26–29
Spencer BA, Mont MA, McGrath MS, Boyd B, Mitrick MF (2009) Initial experience with custom-fit total knee replacement: intra-operative events and long-leg coronal alignment. Int Orthop 33:1571–1575
White D, Chelule KL, Seedhom BB (2008) Accuracy of MRI vs CT imaging with particular reference to patient specific templates for total knee replacement surgery. Int J Med Robot 4:224–231
Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J (2014) Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res 472:263–271
Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV Jr (2012) Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res 470:99–107
Noble JW Jr, Moore CA, Liu N (2012) The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty 27:153–155
Watters TS, Mather RC 3rd, Browne JA, Berend KR, Lombardi AV Jr, Bolognesi MP (2011) Analysis of procedure-related costs and proposed benefits of using patient-specific approach in total knee arthroplasty. J Surg Orthop Adv 20:112–116
Howell SM, Kuznik K, Hull ML, Siston RA (2008) Results of an initial experience with custom-fit positioning total knee arthroplasty in a series of 48 patients. Orthopedics 31:857–863
Slover JD, Rubash HE, Malchau H, Bosco JA (2012) Cost-effectiveness analysis of custom total knee cutting blocks. J Arthroplasty 27:180–185
Daniilidis K, Tibesku CO (2014) A comparison of conventional and patient-specific instruments in total knee arthroplasty. Int Orthop 38:503–508
Macdessi SJ, Jang B, Harris IA, Wheatley E, Bryant C, Chen DB (2014) A comparison of alignment using patient specific guides, computer navigation and conventional instrumentation in total knee arthroplasty. Knee 21:406–409
Moubarak H, Brilhault J (2014) Contribution of patient-specific cutting guides to lower limb alignment for total knee arthroplasty. Orthop Traumatol Surg Res 100(Suppl):S239–S242
Roh YW, Kim TW, Lee S, Seong SC, Lee MC (2013) Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res 471:3988–3995
Parratte S, Blanc G, Boussemart T, Ollivier M, Le Corroller T, Argenson JN (2013) Rotation in total knee arthroplasty: no difference between patient-specific and conventional instrumentation. Knee Surg Sports Traumatol Arthrosc 21:2213–2219
Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. doi:10.1371/journal.pmed.1000097
Bauwens K, Matthes G, Wich M, Gebhard F, Hanson B, Ekkernkamp A et al (2007) Navigated total knee replacement. A meta-analysis. J Bone Joint Surg Am 89:261–269
Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD et al (2007) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928
Shearman CM, Brandser EA, Kathol MH, Clark WA, Callaghan JJ (1998) An easy linear estimation of the mechanical axis on long-leg radiographs. AJR Am J Roentgenol 170:1220–1222
Victor J (2009) Rotational alignment of the distal femur: a literature review. Orthop Traumatol Surg Res 95:365–372
Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560
Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L (2008) Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol 61:991–996
Woolson ST, Harris AH, Wagner DW, Giori NJ (2014) Component alignment during total knee arthroplasty with use of standard or custom instrumentation: a randomized clinical trial using computed tomography for postoperative alignment measurement. J Bone Joint Surg Am 96:366–372
Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C (2013) A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J 95-B:354–359
Hamilton WG, Parks NL, Saxena A (2013) Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty 28(Suppl):96–100
Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM (2012) J Bone Joint Surg (Br) 94(Suppl A):95–99
Chen JY, Yeo SJ, Yew AK, Tay DK, Chia SL, Lo NN et al (2014) The radiological outcomes of patient-specific instrumentation versus conventional total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22:630–635
Barrett W, Hoeffel D, Dalury D, Mason JB, Murphy J, Himden S (2014) In-vivo alignment comparing patient specific instrumentation with both conventional and computer assisted surgery (CAS) instrumentation in total knee arthroplasty. J Arthroplasty 29:343–347
Yaffe M, Luo M, Goyal N, Chan P, Patel A, Cayo M et al (2013) Clinical, functional, and radiographic outcomes following total knee arthroplasty with patient-specific instrumentation, computer-assisted surgery, and manual instrumentation: a short-term follow-up study. Int J Comput Assist Radiol Surg. [Epub ahead of print]
Marimuthu K, Chen DB, Harris IA, Wheatley E, Bryant CJ, MacDessi SJ (2014) A multi-planar CT-based comparative analysis of patient-specific cutting guides with conventional instrumentation in total knee arthroplasty. J Arthroplasty 29:1138–1142
Boonen B, Schotanus MG, Kort NP (2012) Preliminary experience with the patient-specific templating total knee arthroplasty. Acta Orthop 83:387–393
Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012
Voleti PB, Hamula MJ, Baldwin KD, Lee GC (2014) Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty. J Arthroplasty. doi:10.1016/j.arth.2014.01.039
Conteduca F, Iorio R, Mazza D, Ferretti A (2014) Patient-specific instruments in total knee arthroplasty. Int Orthop 38:259–265
Stronach BM, Pelt CE, Erickson J, Peters CL (2013) Patient-specific total knee arthroplasty required frequent surgeon-directed changes. Clin Orthop Relat Res 471:169–174
Lustig S, Scholes CJ, Oussedik SI, Kinzel V, Coolican MR, Parker DA (2013) Unsatisfactory accuracy as determined by computer navigation of VISIONAIRE patient-specific instrumentation for total knee arthroplasty. J Arthroplasty 28:469–473
Thienpont E, Paternostre F, Pietsch M, Hafez M, Howell S (2013) Total knee arthroplasty with patient-specific instruments improves function and restores limb alignment in patients with extra-articular deformity. Knee 20:407–411
Johnson DR (2011) The benefits of customized patient instrumentation to lower-volume joint replacement surgeons: results from practice. Am J Orthop 40(Suppl):13–16
Pietsch M, Djahani O, Hochegger M, Plattner F, Hofmann S (2013) Patient-specific total knee arthroplasty: the importance of planning by the surgeon. Knee Surg Sports Traumatol Arthrosc 21:2220–2226
Koch PP, Muller D, Pisan M, Fucentese SF (2013) Radiographic accuracy in TKA with a CT-based patient-specific cutting block technique. Knee Surg Sports Traumatol Arthrosc 21:2200–2205
Plaskos C, Hodgson AJ, Inkpen K, McGraw RW (2002) Bone cutting errors in total knee arthroplasty. J Arthroplasty 17:698–705
Kotela A, Kotela I (2014) Patient-specific computed tomography based instrumentation in total knee arthroplasty: a prospective randomized controlled trail. Int Orthop. doi:10.1007/s00264-014-2399-6
Soares HP, Daniels S, Kumar A, Clarke M, Scott C, Swann S et al (2004) Bad reporting does not mean bad methods for randomised trials: observational study of randomised controlled trials performed by the Radiation Therapy Oncology Group. BMJ 328:22–24
Honl M, Dierk O, Gauck C, Carrero V, Lampe F, Dries S et al (2003) Comparison of robotic-assisted and manual implantation of a primary total hip replacement. A prospective study. J Bone Joint Surg Am 85-A:1470–1478
Vundelinckx BJ, Bruckers L, De Mulder K, De Schepper J, Van Esbroeck G (2013) Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. J Arthroplasty 28:964–970
Acknowledgments
We would like to thank Joanne Archambault, Ph.D. for her editorial support during preparation of this manuscript.
Conflict of interest
P. Chiron is a consultant for Zimmer, Smith & Nephew and Sanofi, and has received royalties from Zimmer and Integra. Jean Michel Laffosse is a consultant for Tornier and Stryker. The other authors have no conflict of interest to disclose.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cavaignac, E., Pailhé, R., Laumond, G. et al. Evaluation of the accuracy of patient-specific cutting blocks for total knee arthroplasty: a meta-analysis. International Orthopaedics (SICOT) 39, 1541–1552 (2015). https://doi.org/10.1007/s00264-014-2549-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00264-014-2549-x