Skip to main content

Advertisement

Log in

Cell distribution and regenerative activity following meniscus replacement

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Meniscus replacement is of clinical benefit, but universal efficacy remains elusive. A greater understanding of the biological activity within implanted allografts or synthetic scaffolds may assist the development of improved surgical strategies.

Materials

Biopsies of fresh–frozen allograft (n = 20), viable allograft (n = 18) and polyurethane scaffolds (n = 20) were obtained at second-look arthroscopy. Histological evaluation of tissue morphology and cell density/distribution was performed using haematoxylin–eosin (H&E) staining. Immunohistochemistry was used to detect the presence of CD34 (on progenitor cells and blood vessels) and smooth muscle actin (SMA)-positive structures and aggrecan. Collagen presence was investigated using picrosirius red staining.

Results

Cell density in the deep zone of the meniscus replacement was significantly higher in polyurethane scaffolds versus allograft transplants (p < 0.01) and also significantly higher in viable allograft compared with deep-frozen allograft (p < 0.01). CD34 staining was significantly higher in polyurethane and viable allografts versus deep-frozen allograft (progenitor cells p < 0.05; blood vessels p < 0.01). There were no significant differences in SMA or aggrecan staining across groups. All three specimen types demonstrated strong presence of collagen type I.

Conclusions

Both viable allograft and a polyurethane meniscal scaffold show enhanced morphological, cell-distribution and regenerative patterns over deep-frozen allograft following surgical implantation. Given the limitations in viable allograft availability, these findings support the continued development of synthetic scaffolds for meniscus replacement surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hutchinson ID, Moran CJ, Potter HG, Warren RF, Rodeo SA (2014) Restoration of the meniscus: form and function. Am J Sports Med 42(4):987–98

    Article  PubMed  Google Scholar 

  2. Noyes FR, Heckmann TP, Barber-Westin SD (2012) Meniscus repair and transplantation: a comprehensive update. J Orthop Sports Phys Ther 42(3):274–90

    Article  PubMed  Google Scholar 

  3. Allaire R, Muriuki M, Gilbertson L, Harner CD (2008) Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg Am 90(9):1922–31

    Article  PubMed  Google Scholar 

  4. Fairbank TJ (1948) Knee joint changes after meniscectomy. J Bone Joint Surg (Br) 30-B:664–70

    Google Scholar 

  5. Arnoczky SP, Warren RF (1982) Microvasculature of the human meniscus. Am J Sports Med 10(2):90–5

    Article  CAS  PubMed  Google Scholar 

  6. Scotti C, Hirschmann MT, Antinolfi P, Martin I, Peretti GM (2013) Meniscus repair and regeneration: review on current methods and research potential. Eur Cell Mater 23(26):150–70

    Google Scholar 

  7. Nepple JJ, Dunn WR, Wright RW (2012) Meniscal repair outcomes at greater than five years: a systematic literature review and meta-analysis. J Bone Joint Surg Am 94(24):2222–7

    Article  PubMed Central  PubMed  Google Scholar 

  8. Pereira H, Frias AM, Oliveira JM, Espregueira-Mendes J, Reis RL (2011) Tissue engineering and regenerative medicine strategies in meniscus lesions. Arthroscopy 27(12):1706–19

    Article  PubMed  Google Scholar 

  9. Makris EA, Hadidi P, Athanasiou KA (2011) The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32(30):7411–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Verdonk R, Almqvist KF, Huysse W, Verdonk PC (2007) Meniscal allografts: indications and outcomes. Sports Med Arthrosc 15(3):121–5

    Article  PubMed  Google Scholar 

  11. McCormick F, Harris JD, Abrams GD, Hussey KE, Wilson H, Frank R, Gupta AK, Bach BR Jr, Cole BJ (2014) Survival and reoperation rates after meniscal allograft transplantation: analysis of failures for 172 consecutive transplants at a minimum 2-year follow-up. Am J Sports Med 42(4):892–7

    Article  PubMed  Google Scholar 

  12. Bouyarmane H, Beaufils P, Pujol N, Bellemans J, Roberts S, Spalding T, Zaffagnini S, Marcacci M, Verdonk P, Womack M, Verdonk R (2014) Polyurethane scaffold in lateral meniscus segmental defects: clinical outcomes at 24 months follow-up. Orthop Traumatol Surg Res 100(1):153–7

    Article  CAS  PubMed  Google Scholar 

  13. De Coninck T, Huysse W, Willemot L, Verdonk R, Verstraete K, Verdonk P (2013) Two-year follow-up study on clinical and radiological outcomes of polyurethane meniscal scaffolds. Am J Sports Med 41(1):64–72

    Article  PubMed  Google Scholar 

  14. Vrancken AC, Buma P, van Tienen TG (2013) Synthetic meniscus replacement: a review. Int Orthop 37(2):291–9

    Article  PubMed Central  PubMed  Google Scholar 

  15. Declercq HA, Forsyth RG, Verbruggen A, Verdonk R, Cornelissen MJ, Verdonk PC (2012) CD34 and SMA expression of superficial zone cells in the normal and pathological human meniscus. J Orthop Res 30(5):800–8

    Article  CAS  PubMed  Google Scholar 

  16. Ferraro GA, De Francesco F, Nicoletti G, Paino F, Desiderio V, Tirino V, D’Andrea F (2013) Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues. J Cell Biochem 114(5):1039–49

    Article  CAS  PubMed  Google Scholar 

  17. Ahluwalia S, Fehm M, Murray MM, Martin SD, Spector M (2001) Distribution of smooth muscle actin-containing cells in the human meniscus. J Orthop Res 19(4):659–64

    Article  CAS  PubMed  Google Scholar 

  18. Rodeo SA, Seneviratne A, Suzuki K, Felker K, Wickiewicz TL, Warren RF (2000) Histological analysis of human meniscal allografts. A preliminary report. J Bone Joint Surg Am 82-A(8):1071–82

    CAS  PubMed  Google Scholar 

  19. Noyes, F. R (1995) A histological study of failed human meniscal allografts. Presented at Arthroscopy Association of North America Specialty Day, Orlando, Florida, Feb. 19

  20. Verdonk R, Verdonk P, Huysse W, Forsyth R, Heinrichs EL (2011) Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med 39(4):774–82

    Article  PubMed  Google Scholar 

  21. Wilson CG, Nishimuta JF, Levenston ME (2009) Chondrocytes and meniscal fibrochondrocytes differentially process aggrecan during de novo extracellular matrix assembly. Tissue Eng Part A 15(7):1513–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Matthies NF, Mulet-Sierra A, Jomha NM, Adesida AB (2013) Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells. J Tissue Eng Regen Med 7(12):965–73

    Article  CAS  PubMed  Google Scholar 

  23. Verdonk PC, Forsyth RG, Wang J, Almqvist KF, Verdonk R, Veys EM, Verbruggen G (2005) Characterisation of human knee meniscus cell phenotype. Osteoarthr Cartil 13(7):548–60

    Article  CAS  PubMed  Google Scholar 

  24. Vanderploeg EJ, Wilson CG, Imler SM, Ling CH, Levenston ME (2012) Regional variations in the distribution and colocalization of extracellular matrix proteins in the juvenile bovine meniscus. J Anat 221(2):174–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Andrews SH, Rattner JB, Abusara Z, Adesida A, Shrive NG, Ronsky JL (2014) Tie-fibre structure and organization in the knee menisci. J Anat 224(5):531–7

    Article  CAS  PubMed  Google Scholar 

  26. Arnoczky SP (1999) Building a meniscus. Biologic considerations. Clin Orthop Relat Res. Oct;(367 Suppl):S244-53

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Verdonk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moran, C.J., Atmaca, S., Declercq, H.A. et al. Cell distribution and regenerative activity following meniscus replacement. International Orthopaedics (SICOT) 38, 1937–1944 (2014). https://doi.org/10.1007/s00264-014-2426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2426-7

Keywords

Navigation