Skeletal tissue regeneration: where can hydrogels play a role?

Abstract

The emerging field of tissue engineering reveals promising approaches for the repair and regeneration of skeletal tissues including the articular cartilage, bone, and the entire joint. Amongst the myriad of biomaterials available to support this strategy, hydrogels are highly tissue mimicking substitutes and thus of great potential for the regeneration of functional tissues. This review comprises an overview of the novel and most promising hydrogels for articular cartilage, osteochondral and bone defect repair. Chondro- and osteo-conductive and -instructive hydrogels are presented, highlighting successful combinations with inductive signals and cell sources. Moreover, advantages, drawbacks, and future perspectives of the role of hydrogels in skeletal regeneration are addressed, pointing out the current state of this rising approach.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Mariani FV (2010) Proximal to distal patterning during limb development and regeneration: a review of converging disciplines. Regen Med 5(3):451–462

    PubMed  Google Scholar 

  2. 2.

    Lenas P, Moos M, Luyten FP (2009) Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng B Rev 15(4):381–394

    Google Scholar 

  3. 3.

    Lenas P, Moos M, Luyten FP (2009) Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. Tissue Eng B Rev 15(4):395–422

    CAS  Google Scholar 

  4. 4.

    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    CAS  PubMed  Google Scholar 

  5. 5.

    Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32(6):733–742

    CAS  PubMed  Google Scholar 

  6. 6.

    Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng B Rev 14(2):199–215

    CAS  Google Scholar 

  7. 7.

    Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23(12):H41–H56

    CAS  PubMed Central  PubMed  Google Scholar 

  8. 8.

    Kloxin AM, Kloxin CJ, Bowman CN, Anseth KS (2010) Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater 22(31):3484–3494

    CAS  PubMed Central  PubMed  Google Scholar 

  9. 9.

    Lin CC, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26(3):631–643

    CAS  PubMed  Google Scholar 

  10. 10.

    Buwalda SJ, Boere KW, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release. doi:10.1016/j.jconrel.2014.03.052

    PubMed  Google Scholar 

  11. 11.

    Patterson J, Martino M, Hubbell J (2010) Biomimetic materials in tissue engineering. Mater Today 13(1–2):14–22

    CAS  Google Scholar 

  12. 12.

    Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    CAS  PubMed  Google Scholar 

  13. 13.

    Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55

    CAS  PubMed  Google Scholar 

  14. 14.

    Spiller KL, Maher SA, Lowman AM (2011) Hydrogels for the repair of articular cartilage defects. Tissue Eng B Rev 17(4):281–299

    CAS  Google Scholar 

  15. 15.

    Wolberg AS, Campbell RA (2008) Thrombin generation, fibrin clot formation and hemostasis. Transfus Apher Sci 38(1):15–23

    PubMed Central  PubMed  Google Scholar 

  16. 16.

    Tan H, DeFail AJ, Rubin JP, Chu CR, Marra KG (2010) Novel multiarm PEG-based hydrogels for tissue engineering. J Biomed Mater Res A 92(3):979–987

    PubMed Central  PubMed  Google Scholar 

  17. 17.

    Schultz KM, Campo-Deano L, Baldwin AD, Kiick KL, Clasen C, Furst EM (2013) Electrospinning covalently cross-linking biocompatible hydrogelators. Polymer (Guildf) 54(1):363–371

    CAS  Google Scholar 

  18. 18.

    Koshy ST, Ferrante TC, Lewin SA, Mooney DJ (2014) Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials 35(8):2477–2487

    CAS  PubMed  Google Scholar 

  19. 19.

    Tan AR, Ifkovits JL, Baker BM, Brey DM, Mauck RL, Burdick JA (2008) Electrospinning of photocrosslinked and degradable fibrous scaffolds. J Biomed Mater Res A 87(4):1034–1043

    PubMed  Google Scholar 

  20. 20.

    Nisbet DR, Forsythe JS, Shen W, Finkelstein DI, Horne MK (2009) Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering. J Biomater Appl 24(1):7–29

    CAS  PubMed  Google Scholar 

  21. 21.

    Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21(10):445–451

    CAS  PubMed  Google Scholar 

  22. 22.

    Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, Mooney DJ (2012) Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci USA 109(48):19590–19595

    CAS  PubMed Central  PubMed  Google Scholar 

  23. 23.

    Brown RA, Wiseman M, Chuo CB, Cheema U, Nazhat SN (2005) Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 15(11):1762–1770

    CAS  Google Scholar 

  24. 24.

    Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN (2002) In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release 78(1–3):199–209

    CAS  PubMed  Google Scholar 

  25. 25.

    Benoit DS, Durney AR, Anseth KS (2006) Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation. Tissue Eng 12(6):1663–1673

    CAS  PubMed  Google Scholar 

  26. 26.

    Nagase H, Fields GB (1996) Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40(4):399–416

    CAS  PubMed  Google Scholar 

  27. 27.

    West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32(1):241–244

    CAS  Google Scholar 

  28. 28.

    Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100(9):5413–5418

    CAS  PubMed Central  PubMed  Google Scholar 

  29. 29.

    Patterson J, Hubbell JA (2010) Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31(30):7836–7845

    CAS  PubMed  Google Scholar 

  30. 30.

    Patterson J, Hubbell JA (2011) SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials 32(5):1301–1310

    CAS  PubMed  Google Scholar 

  31. 31.

    Schense JC, Hubbell JA (1999) Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug Chem 10(1):75–81

    CAS  PubMed  Google Scholar 

  32. 32.

    Soon AS, Stabenfeldt SE, Brown WE, Barker TH (2010) Engineering fibrin matrices: the engagement of polymerization pockets through fibrin knob technology for the delivery and retention of therapeutic proteins. Biomaterials 31(7):1944–1954

    CAS  PubMed Central  PubMed  Google Scholar 

  33. 33.

    Nishi N, Matsushita O, Yuube K, Miyanaka H, Okabe A, Wada F (1998) Collagen-binding growth factors: production and characterization of functional fusion proteins having a collagen-binding domain. Proc Natl Acad Sci USA 95(12):7018–7023

    CAS  PubMed Central  PubMed  Google Scholar 

  34. 34.

    Andrades JA, Han B, Becerra J, Sorgente N, Hall FL, Nimni ME (1999) A recombinant human TGF-beta1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Exp Cell Res 250(2):485–498

    CAS  PubMed  Google Scholar 

  35. 35.

    Lin H, Chen B, Sun W, Zhao W, Zhao Y, Dai J (2006) The effect of collagen-targeting platelet-derived growth factor on cellularization and vascularization of collagen scaffolds. Biomaterials 27(33):5708–5714

    CAS  PubMed  Google Scholar 

  36. 36.

    Zhu J, Tang C, Kottke-Marchant K, Marchant RE (2009) Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug Chem 20(2):333–339

    CAS  PubMed Central  PubMed  Google Scholar 

  37. 37.

    Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmokel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 17(15):2260–2262

    CAS  PubMed  Google Scholar 

  38. 38.

    Lin CC, Anseth KS (2009) Controlling affinity binding with peptide-functionalized poly(ethylene glycol) hydrogels. Adv Funct Mater 19(14):2325–2331

    CAS  PubMed Central  PubMed  Google Scholar 

  39. 39.

    Oss-Ronen L, Seliktar D (2011) Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery. Acta Biomater 7(1):163–170

    CAS  PubMed  Google Scholar 

  40. 40.

    Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, Kon E (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(6):1182–1191

    Google Scholar 

  41. 41.

    Jeon JE, Vaquette C, Klein TJ, Hutmacher DW (2014) Perspectives in multiphasic osteochondral tissue engineering. Anat Rec (Hoboken) 297(1):26–35

    CAS  Google Scholar 

  42. 42.

    Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzman-Morales J (2012) The cartilage-bone interface. J Knee Surg 25(2):85–97

    PubMed  Google Scholar 

  43. 43.

    Amini AA, Nair LS (2012) Injectable hydrogels for bone and cartilage repair. Biomed Mater 7(2):024105

    PubMed  Google Scholar 

  44. 44.

    Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657

    CAS  PubMed  Google Scholar 

  45. 45.

    Klein TJ, Rizzi SC, Reichert JC, Georgi N, Malda J, Schuurman W, Crawford RW, Hutmacher DW (2009) Strategies for zonal cartilage repair using hydrogels. Macromol Biosci 9(11):1049–1058

  46. 46.

    Lopa S, Madry H (2014) Bioinspired scaffolds for osteochondral regeneration. Tissue Eng A. doi:10.1089/ten.tea.2013.0356

    Google Scholar 

  47. 47.

    Newman AP (1998) Articular cartilage repair. Am J Sports Med 26(2):309–324

    CAS  PubMed  Google Scholar 

  48. 48.

    Moreira-Teixeira LS, Georgi N, Leijten J, Wu L, Karperien M (2011) Cartilage tissue engineering. Cartilage and bone development and its disorders. Endocr Dev 21:102–115

    CAS  PubMed  Google Scholar 

  49. 49.

    Ingavle GC, Gehrke SH, Detamore MS (2014) The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan. Biomaterials 35(11):3558–3570

    CAS  PubMed  Google Scholar 

  50. 50.

    Mhanna R, Ozturk E, Vallmajo-Martin Q, Millan C, Muller M, Zenobi-Wong M (2014) GFOGER-modified MMP-sensitive polyethylene glycol hydrogels induce chondrogenic differentiation of human mesenchymal stem cells. Tissue Eng A 20(7–8):1165–1174

  51. 51.

    Liu SQ, Tian Q, Hedrick JL, Po Hui JH, Ee PL, Yang YY (2010) Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials 31(28):7298–7307

    CAS  PubMed  Google Scholar 

  52. 52.

    Salinas CN, Anseth KS (2008) The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 29(15):2370–2377

    CAS  PubMed Central  PubMed  Google Scholar 

  53. 53.

    Shah RN, Shah NA, Del Rosario Lim MM, Hsieh C, Nuber G, Stupp SI (2010) Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci USA 107(8):3293–3298

    CAS  PubMed Central  PubMed  Google Scholar 

  54. 54.

    Salinas CN, Anseth KS (2009) Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells. J Biomed Mater Res A 90(2):456–464

    PubMed  Google Scholar 

  55. 55.

    Connelly JT, Petrie TA, Garcia AJ, Levenston ME (2011) Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels. Eur Cells Mater 22:168–176

    CAS  Google Scholar 

  56. 56.

    Elisseeff J, McIntosh W, Fu K, Blunk BT, Langer R (2001) Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res Off Publ Orthop Res Soc 19(6):1098–1104

    CAS  Google Scholar 

  57. 57.

    Jin R, Moreira Teixeira LS, Krouwels A, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2010) Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 6(6):1968–1977

    CAS  PubMed  Google Scholar 

  58. 58.

    Moreira Teixeira LS, Leijten JC, Wennink JW, Chatterjea AG, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation. Biomaterials 33(14):3651–3661

    CAS  PubMed  Google Scholar 

  59. 59.

    Jin R, Moreira Teixeira LS, Dijkstra PJ, Zhong Z, van Blitterswijk CA, Karperien M, Feijen J (2010) Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng A 16(8):2429–2440

    CAS  Google Scholar 

  60. 60.

    Jin R, Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2010) Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 31(11):3103–3113

    CAS  PubMed  Google Scholar 

  61. 61.

    Jin R, Moreira Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2011) Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J Control Release Off J Control Release Soc 152(1):186–195

    CAS  Google Scholar 

  62. 62.

    Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2544–2551

    CAS  PubMed  Google Scholar 

  63. 63.

    Wang W, Li B, Yang J, Xin L, Li Y, Yin H, Qi Y, Jiang Y, Ouyang H, Gao C (2010) The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 31(34):8964–8973

    CAS  PubMed  Google Scholar 

  64. 64.

    Bian L, Guvendiren M, Mauck RL, Burdick JA (2013) Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proc Natl Acad Sci USA 110(25):10117–10122

    CAS  PubMed Central  PubMed  Google Scholar 

  65. 65.

    Simson JA, Strehin IA, Lu Q, Uy MO, Elisseeff JH (2013) An adhesive bone marrow scaffold and bone morphogenetic-2 protein carrier for cartilage tissue engineering. Biomacromolecules 14(3):637–643

    CAS  PubMed  Google Scholar 

  66. 66.

    Sharma B, Fermanian S, Gibson M, Unterman S, Herzka DA, Cascio B, Coburn J, Hui AY, Marcus N, Gold GE, Elisseeff JH (2013) Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci Transl Med 5(167):167ra166

    Google Scholar 

  67. 67.

    Khanarian NT, Jiang J, Wan LQ, Mow VC, Lu HH (2012) A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng A 18(5–6):533–545

    CAS  Google Scholar 

  68. 68.

    Rodrigues MT, Lee SJ, Gomes ME, Reis RL, Atala A, Yoo JJ (2012) Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Acta Biomater 8(7):2795–2806

    CAS  PubMed  Google Scholar 

  69. 69.

    Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release Off J Control Release Soc 134(2):81–90

    CAS  Google Scholar 

  70. 70.

    Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH (2006) Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27(7):1071–1080

    CAS  PubMed  Google Scholar 

  71. 71.

    Tampieri A, Sandri M, Landi E, Pressato D, Francioli S, Quarto R, Martin I (2008) Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 29(26):3539–3546

    CAS  PubMed  Google Scholar 

  72. 72.

    Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75(1):156–167

    PubMed  Google Scholar 

  73. 73.

    Qu D, Li J, Li Y, Khadka A, Zuo Y, Wang H, Liu Y, Cheng L (2011) Ectopic osteochondral formation of biomimetic porous PVA-n-HA/PA6 bilayered scaffold and BMSCs construct in rabbit. J Biomed Mater Res B Appl Biomater 96(1):9–15

    PubMed  Google Scholar 

  74. 74.

    Miller RE, Grodzinsky AJ, Vanderploeg EJ, Lee C, Ferris DJ, Barrett MF, Kisiday JD, Frisbie DD (2010) Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 18(12):1608–1619

    CAS  Google Scholar 

  75. 75.

    Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res Off Publ Orthop Res Soc 28(1):116–124

    Google Scholar 

  76. 76.

    Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41(7):693–701

    CAS  PubMed  Google Scholar 

  77. 77.

    Bhakta G, Lim ZX, Rai B, Lin T, Hui JH, Prestwich GD, van Wijnen AJ, Nurcombe V, Cool SM (2013) The influence of collagen and hyaluronan matrices on the delivery and bioactivity of bone morphogenetic protein-2 and ectopic bone formation. Acta Biomater 9(11):9098–9106

    CAS  PubMed  Google Scholar 

  78. 78.

    Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Noh I, Lee SH, Park Y, Sun K (2007) Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28(10):1830–1837

    CAS  PubMed  Google Scholar 

  79. 79.

    Kisiel M, Klar AS, Martino MM, Ventura M, Hilborn J (2013) Evaluation of injectable constructs for bone repair with a subperiosteal cranial model in the rat. PLoS ONE 8(8):e71683

    CAS  PubMed Central  PubMed  Google Scholar 

  80. 80.

    Bae MS, Ohe JY, Lee JB, Heo DN, Byun W, Bae H, Kwon YD, Kwon IK (2013) Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone 59:189–198

    PubMed  Google Scholar 

  81. 81.

    Bae MS, Yang DH, Lee JB, Heo DN, Kwon YD, Youn IC, Choi K, Hong JH, Kim GT, Choi YS, Hwang EH, Kwon IK (2011) Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Biomaterials 32(32):8161–8171

    CAS  PubMed  Google Scholar 

  82. 82.

    Patterson J, Siew R, Herring SW, Lin AS, Guldberg R, Stayton PS (2010) Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31(26):6772–6781

    CAS  PubMed Central  PubMed  Google Scholar 

  83. 83.

    Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, Park Y, Sun K, Hwang SJ (2010) In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering. J Biomed Mater Res A 95(3):673–681

    PubMed  Google Scholar 

  84. 84.

    Tan S, Fang JY, Yang Z, Nimni ME, Han B (2014) The synergetic effect of hydrogel stiffness and growth factor on osteogenic differentiation. Biomaterials 35:5294–5306

    CAS  PubMed  Google Scholar 

  85. 85.

    Hokugo A, Saito T, Li A, Sato K, Tabata Y, Jarrahy R (2014) Stimulation of bone regeneration following the controlled release of water-insoluble oxysterol from biodegradable hydrogel. Biomaterials 35:5565–5571

    CAS  PubMed  Google Scholar 

  86. 86.

    Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, Hubbell JA (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518

    CAS  PubMed  Google Scholar 

  87. 87.

    Mariner PD, Wudel JM, Miller DE, Genova EE, Streubel SO, Anseth KS (2013) Synthetic hydrogel scaffold is an effective vehicle for delivery of INFUSE (rhBMP2) to critical-sized calvaria bone defects in rats. J Orthop Res 31:401–406

    CAS  PubMed Central  PubMed  Google Scholar 

  88. 88.

    Shekaran A, Garcia JR, Clark AY, Kavanaugh TE, Lin AS, Guldberg RE, Garcia AJ (2014) Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 35:5453–5461

    CAS  PubMed  Google Scholar 

  89. 89.

    Martinez-Sanz E, Varghese OP, Kisiel M, Engstrand T, Reich KM, Bohner M, Jonsson KB, Kohler T, Muller R, Ossipov DA, Hilborn J (2012) Minimally invasive mandibular bone augmentation using injectable hydrogels. J Tissue Eng Regen Med 6(Suppl 3):s15–s23

    PubMed  Google Scholar 

  90. 90.

    Docherty-Skogh AC, Bergman K, Waern MJ, Ekman S, Hultenby K, Ossipov D, Hilborn J, Bowden T, Engstrand T (2010) Bone morphogenetic protein-2 delivered by hyaluronan-based hydrogel induces massive bone formation and healing of cranial defects in minipigs. Plast Reconstr Surg 125(5):1383–1392

    CAS  PubMed  Google Scholar 

  91. 91.

    Hulsart-Billstrom G, Piskounova S, Gedda L, Andersson BM, Bergman K, Hilborn J, Larsson S, Bowden T (2013) Morphological differences in BMP-2-induced ectopic bone between solid and crushed hyaluronan hydrogel templates. J Mater Sci Mater Med 24(5):1201–1209

    PubMed  Google Scholar 

  92. 92.

    Xu C, Wang Y, Yu X, Chen X, Li X, Yang X, Li S, Zhang X, Xiang AP (2009) Evaluation of human mesenchymal stem cells response to biomimetic bioglass-collagen-hyaluronic acid-phosphatidylserine composite scaffolds for bone tissue engineering. J Biomed Mater Res A 88(1):264–273

    PubMed  Google Scholar 

  93. 93.

    Xu C, Su P, Wang Y, Chen X, Meng Y, Liu C, Yu X, Yang X, Yu W, Zhang X, Xiang AP (2010) A novel biomimetic composite scaffold hybridized with mesenchymal stem cells in repair of rat bone defects models. J Biomed Mater Res A 95(2):495–503

    PubMed  Google Scholar 

  94. 94.

    Chen JP, Tsai MJ, Liao HT (2013) Incorporation of biphasic calcium phosphate microparticles in injectable thermoresponsive hydrogel modulates bone cell proliferation and differentiation. Colloids Surf B: Biointerfaces 110:120–129

    CAS  PubMed  Google Scholar 

  95. 95.

    Ma K, Cai X, Zhou Y, Zhang Z, Jiang T, Wang Y (2014) Osteogenic property of a biodegradable three-dimensional macroporous hydrogel coating on titanium implants fabricated via EPD. Biomed Mater 9. doi:10.1088/1748-6041/9/1/015008

  96. 96.

    Kang SW, Kim JS, Park KS, Cha BH, Shim JH, Kim JY, Cho DW, Rhie JW, Lee SH (2011) Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone 48(2):298–306

    CAS  PubMed  Google Scholar 

  97. 97.

    Hoffman MD, Xie C, Zhang X, Benoit DS (2013) The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials 34(35):8887–8898

    CAS  PubMed  Google Scholar 

  98. 98.

    Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J (2008) Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol J Int Soc Matrix Biol 27(1):12–21

    CAS  Google Scholar 

  99. 99.

    Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R (1999) Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 104(4):1014–1022

    CAS  PubMed  Google Scholar 

  100. 100.

    Grayson WL, Chao PH, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26(4):181–189

    CAS  PubMed Central  PubMed  Google Scholar 

  101. 101.

    Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung UI, Takato T, Hoshi K (2006) Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A 78(1):1–11

    PubMed  Google Scholar 

  102. 102.

    Vashist A, Vashist A, Gupta YK, Ahmad S (2014) Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2(2):147–166

    CAS  Google Scholar 

  103. 103.

    Melrose J, Chuang C, Whitelock J (2008) Tissue engineering log cartilages using biomatrices. J Chem Technol Biotechnol 83(4):444–463

    CAS  Google Scholar 

  104. 104.

    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    CAS  PubMed  Google Scholar 

  105. 105.

    Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4–5):339–359

    CAS  PubMed  Google Scholar 

  106. 106.

    Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233

    CAS  PubMed  Google Scholar 

  107. 107.

    Yu DA, Han J, Kim BS (2012) Stimulation of chondrogenic differentiation of mesenchymal stem cells. Int J Stem Cells 5(1):16–22

    CAS  PubMed Central  PubMed  Google Scholar 

  108. 108.

    Minegishi Y, Hosokawa K, Tsumaki N (2013) Time-lapse observation of the dedifferentiation process in mouse chondrocytes using chondrocyte-specific reporters. Osteoarth Cartil/OARS, Osteoarthr Res Soc 21(12):1968–1975

    CAS  Google Scholar 

  109. 109.

    Koelling S, Kruegel J, Irmer M, Path JR, Sadowski B, Miro X, Miosge N (2009) Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 4(4):324–335

    CAS  PubMed  Google Scholar 

  110. 110.

    Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT (2003) The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 11(12):879–890

    CAS  Google Scholar 

  111. 111.

    Moreira Teixeira LS, Leijten JC, Sobral J, Jin R, van Apeldoorn AA, Feijen J, van Blitterswijk C, Dijkstra PJ, Karperien M (2012) High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo. Eur Cells Mater 23:387–399

    CAS  Google Scholar 

  112. 112.

    Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31(2):108–115

    CAS  PubMed  Google Scholar 

  113. 113.

    Johnson LL, Verioti C, Gelber J, Spector M, D’Lima D, Pittsley A (2011) The pathology of the end-stage osteoarthritic lesion of the knee: potential role in cartilage repair. Knee 18(6):402–406

    PubMed  Google Scholar 

  114. 114.

    Gawlitta D, Farrell E, Malda J, Creemers LB, Alblas J, Dhert WJ (2010) Modulating endochondral ossification of multipotent stromal cells for bone regeneration. Tissue Eng B Rev 16(4):385–395

    Google Scholar 

  115. 115.

    Malda J, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2003) Cartilage tissue engineering: controversy in the effect of oxygen. Crit Rev Biotechnol 23(3):175–194

    CAS  PubMed  Google Scholar 

  116. 116.

    Leijten JC, Moreira Teixeira LS, Landman EB, van Blitterswijk CA, Karperien M (2012) Hypoxia inhibits hypertrophic differentiation and endochondral ossification in explanted tibiae. PLoS ONE 7(11):e49896

    CAS  PubMed Central  PubMed  Google Scholar 

  117. 117.

    Zhu M, Feng Q, Bian L (2014) Differential effect of hypoxia on human mesenchymal stem cell chondrogenesis and hypertrophy in hyaluronic acid hydrogels. Acta Biomater 10(3):1333–1340

    CAS  PubMed  Google Scholar 

  118. 118.

    Weiss HE, Roberts SJ, Schrooten J, Luyten FP (2012) A semi-autonomous model of endochondral ossification for developmental tissue engineering. Tissue Eng A 18(13–14):1334–1343

    CAS  Google Scholar 

  119. 119.

    Moreira Teixeira LS, Bijl S, Pully VV, Otto C, Jin R, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair. Biomaterials 33(11):3164–3174

    CAS  PubMed  Google Scholar 

  120. 120.

    Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z (2013) Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics 36(11):868–873

    PubMed  Google Scholar 

  121. 121.

    Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A (2006) A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 13(3):203–210

    CAS  PubMed  Google Scholar 

  122. 122.

    Marlovits S, Zeller P, Singer P, Resinger C, Vecsei V (2006) Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 57(1):24–31

    PubMed  Google Scholar 

  123. 123.

    Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov S, Khademhosseini A (2011) Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater 7(4):1441–1451

  124. 124.

    Re’em T, Witte F, Willbold E, Ruvinov E, Cohen S (2012) Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system. Acta Biomater 8(9):3283–3293

    PubMed  Google Scholar 

  125. 125.

    Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng A 17(21–22):2845–2855

    CAS  Google Scholar 

  126. 126.

    Baldini A, Zaffe D, Nicolini G (2010) Bone-defects healing by high-molecular hyaluronic acid: preliminary results. Ann Stomatol (Roma) 1(1):2–7

    Google Scholar 

  127. 127.

    Ballini A, Cantore S, Capodiferro S, Grassi FR (2009) Esterified hyaluronic acid and autologous bone in the surgical correction of the infra-bone defects. Int J Med Sci 6(2):65–71

    CAS  PubMed Central  PubMed  Google Scholar 

  128. 128.

    Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1):65–74

    CAS  PubMed Central  PubMed  Google Scholar 

  129. 129.

    Diab T, Pritchard EM, Uhrig BA, Boerckel JD, Kaplan DL, Guldberg RE (2012) A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects. J Mech Behav Biomed Mater 11:123–131

    CAS  PubMed Central  PubMed  Google Scholar 

  130. 130.

    Sonnet C, Simpson CL, Olabisi RM, Sullivan K, Lazard Z, Gugala Z, Peroni JF, Weh JM, Davis AR, West JL, Olmsted-Davis EA (2012) Rapid healing of femoral defects in rats with low dose sustained BMP2 expression from PEGDA hydrogel microspheres. J Orthop Res 31:1597–1604

    Google Scholar 

  131. 131.

    Killion JA, Geever LM, Devine DM, Higginbotham CL (2014) Fabrication and in vitro biological evaluation of photopolymerisable hydroxyapatite hydrogel composites for bone regeneration. J Biomater Appl 28(8):1274–1283

    PubMed  Google Scholar 

  132. 132.

    Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86

    CAS  PubMed  Google Scholar 

  133. 133.

    Kino-Oka M, Ogawa N, Umegaki R, Taya M (2005) Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner. Tissue Eng 11(3–4):535–545

    CAS  PubMed  Google Scholar 

  134. 134.

    Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765

    PubMed  Google Scholar 

  135. 135.

    Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G (2002) Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng 8(2):175–188

    CAS  PubMed  Google Scholar 

  136. 136.

    Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D (2005) Bioreactor cultivation of osteochondral grafts. Orthod Craniofac Res 8(3):209–218

    CAS  PubMed  Google Scholar 

  137. 137.

    Spitters TW, Leijten JC, Deus FD, Costa IB, van Apeldoorn AA, van Blitterswijk CA, Karperien M (2013) A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering. Tissue Eng C Methods 19(10):774–783

    CAS  Google Scholar 

  138. 138.

    Mahmoudifar N, Doran PM (2013) Osteogenic differentiation and osteochondral tissue engineering using human adipose-derived stem cells. Biotechnol Prog 29(1):176–185

    CAS  PubMed  Google Scholar 

  139. 139.

    Grayson WL, Bhumiratana S, Grace Chao PH, Hung CT, Vunjak-Novakovic G (2010) Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthr cartil/OARS, Osteoarthr Res Soc 18(5):714–723

    CAS  Google Scholar 

  140. 140.

    LeBaron RG, Athanasiou KA (2000) Ex vivo synthesis of articular cartilage. Biomaterials 21(24):2575–2587

    CAS  PubMed  Google Scholar 

  141. 141.

    Papantoniou Ir I, Chai YC, Luyten FP, Schrooten Ir J (2013) Process quality engineering for bioreactor-driven manufacturing of tissue-engineered constructs for bone regeneration. Tissue Eng C Methods 19(8):596–609

    Google Scholar 

  142. 142.

    Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F, Madry H, Mata A, Mauck RL, Semino CE, Stoddart MJ (2013) Tissue engineering for articular cartilage repair—the state of the art. Eur Cell Mater 25:248–267

    CAS  PubMed  Google Scholar 

  143. 143.

    Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, Vandekerckhove B, Almqvist KF, Claes T, Handelberg F, Lagae K, van der Bauwhede J, Vandenneucker H, Yang KG, Jelic M, Verdonk R, Veulemans N, Bellemans J, Luyten FP (2008) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36(2):235–246

  144. 144.

    Axelrad TW, Einhorn TA (2009) Bone morphogenetic proteins in orthopaedic surgery. Cytokine Growth Factor Rev 20(5–6):481–488

    CAS  PubMed  Google Scholar 

  145. 145.

    Bostrom MP, Saleh KJ, Einhorn TA (1999) Osteoinductive growth factors in preclinical fracture and long bone defects models. Orthop Clin N Am 30(4):647–658

    CAS  Google Scholar 

  146. 146.

    Elisseeff J, Puleo C, Yang F, Sharma B (2005) Advances in skeletal tissue engineering with hydrogels. Orthod Craniofacial Res 8(3):150–161

    CAS  Google Scholar 

  147. 147.

    Vinatier C, Guicheux J, Daculsi G, Layrolle P, Weiss P (2006) Cartilage and bone tissue engineering using hydrogels. Biomed Mater Eng 16(4 Suppl):S107–S113

    CAS  PubMed  Google Scholar 

  148. 148.

    Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, Loer I, Barthel T, Rudert M, Noth U (2011) A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 39(12):2558–2565

    PubMed  Google Scholar 

  149. 149.

    Erben RG, Silva-Lima B, Reischl I, Steinhoff G, Tiedemann G, Dalemans W, Vos A, Janssen RT, Le Blanc K, van Osch GP, Luyten FP (2014) White paper on how to go forward with cell-based advanced therapies in Europe. Tissue Eng A. doi:10.1089/ten.TEA.2013.0589

    Google Scholar 

Download references

Acknowledgments

This work is part of Prometheus, the KU Leuven R&D division for skeletal tissue engineering. http://www.kuleuven.be/prometheus. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007–2013)/ERC Grant Agreement n. 249191; from the Research Program of the Research Foundation—Flanders (FWO), grant n. G.0982.11 and post-doctoral mandate—12C8214N; and from the special research fund of the KU Leuven (GOA/13/017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frank P. Luyten.

Additional information

Liliana S. Moreira Teixeira and Jennifer Patterson contributed equally to this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moreira Teixeira, L.S., Patterson, J. & Luyten, F.P. Skeletal tissue regeneration: where can hydrogels play a role?. International Orthopaedics (SICOT) 38, 1861–1876 (2014). https://doi.org/10.1007/s00264-014-2402-2

Download citation

Keywords

  • Bone repair
  • Cartilage repair
  • Hydrogels
  • Osteochondral repair
  • Tissue engineering