Advertisement

International Orthopaedics

, Volume 38, Issue 9, pp 1861–1876 | Cite as

Skeletal tissue regeneration: where can hydrogels play a role?

  • Liliana S. Moreira Teixeira
  • Jennifer Patterson
  • Frank P. Luyten
Review Article

Abstract

The emerging field of tissue engineering reveals promising approaches for the repair and regeneration of skeletal tissues including the articular cartilage, bone, and the entire joint. Amongst the myriad of biomaterials available to support this strategy, hydrogels are highly tissue mimicking substitutes and thus of great potential for the regeneration of functional tissues. This review comprises an overview of the novel and most promising hydrogels for articular cartilage, osteochondral and bone defect repair. Chondro- and osteo-conductive and -instructive hydrogels are presented, highlighting successful combinations with inductive signals and cell sources. Moreover, advantages, drawbacks, and future perspectives of the role of hydrogels in skeletal regeneration are addressed, pointing out the current state of this rising approach.

Keywords

Bone repair Cartilage repair Hydrogels Osteochondral repair Tissue engineering 

Notes

Acknowledgments

This work is part of Prometheus, the KU Leuven R&D division for skeletal tissue engineering. http://www.kuleuven.be/prometheus. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007–2013)/ERC Grant Agreement n. 249191; from the Research Program of the Research Foundation—Flanders (FWO), grant n. G.0982.11 and post-doctoral mandate—12C8214N; and from the special research fund of the KU Leuven (GOA/13/017).

References

  1. 1.
    Mariani FV (2010) Proximal to distal patterning during limb development and regeneration: a review of converging disciplines. Regen Med 5(3):451–462PubMedGoogle Scholar
  2. 2.
    Lenas P, Moos M, Luyten FP (2009) Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Eng B Rev 15(4):381–394Google Scholar
  3. 3.
    Lenas P, Moos M, Luyten FP (2009) Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. Tissue Eng B Rev 15(4):395–422Google Scholar
  4. 4.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689PubMedGoogle Scholar
  5. 5.
    Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32(6):733–742PubMedGoogle Scholar
  6. 6.
    Ahmed TA, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng B Rev 14(2):199–215Google Scholar
  7. 7.
    Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23(12):H41–H56PubMedCentralPubMedGoogle Scholar
  8. 8.
    Kloxin AM, Kloxin CJ, Bowman CN, Anseth KS (2010) Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater 22(31):3484–3494PubMedCentralPubMedGoogle Scholar
  9. 9.
    Lin CC, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26(3):631–643PubMedGoogle Scholar
  10. 10.
    Buwalda SJ, Boere KW, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release. doi: 10.1016/j.jconrel.2014.03.052 PubMedGoogle Scholar
  11. 11.
    Patterson J, Martino M, Hubbell J (2010) Biomimetic materials in tissue engineering. Mater Today 13(1–2):14–22Google Scholar
  12. 12.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926PubMedGoogle Scholar
  13. 13.
    Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55PubMedGoogle Scholar
  14. 14.
    Spiller KL, Maher SA, Lowman AM (2011) Hydrogels for the repair of articular cartilage defects. Tissue Eng B Rev 17(4):281–299Google Scholar
  15. 15.
    Wolberg AS, Campbell RA (2008) Thrombin generation, fibrin clot formation and hemostasis. Transfus Apher Sci 38(1):15–23PubMedCentralPubMedGoogle Scholar
  16. 16.
    Tan H, DeFail AJ, Rubin JP, Chu CR, Marra KG (2010) Novel multiarm PEG-based hydrogels for tissue engineering. J Biomed Mater Res A 92(3):979–987PubMedCentralPubMedGoogle Scholar
  17. 17.
    Schultz KM, Campo-Deano L, Baldwin AD, Kiick KL, Clasen C, Furst EM (2013) Electrospinning covalently cross-linking biocompatible hydrogelators. Polymer (Guildf) 54(1):363–371Google Scholar
  18. 18.
    Koshy ST, Ferrante TC, Lewin SA, Mooney DJ (2014) Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials 35(8):2477–2487PubMedGoogle Scholar
  19. 19.
    Tan AR, Ifkovits JL, Baker BM, Brey DM, Mauck RL, Burdick JA (2008) Electrospinning of photocrosslinked and degradable fibrous scaffolds. J Biomed Mater Res A 87(4):1034–1043PubMedGoogle Scholar
  20. 20.
    Nisbet DR, Forsythe JS, Shen W, Finkelstein DI, Horne MK (2009) Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering. J Biomater Appl 24(1):7–29PubMedGoogle Scholar
  21. 21.
    Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21(10):445–451PubMedGoogle Scholar
  22. 22.
    Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, Mooney DJ (2012) Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci USA 109(48):19590–19595PubMedCentralPubMedGoogle Scholar
  23. 23.
    Brown RA, Wiseman M, Chuo CB, Cheema U, Nazhat SN (2005) Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 15(11):1762–1770Google Scholar
  24. 24.
    Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN (2002) In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release 78(1–3):199–209PubMedGoogle Scholar
  25. 25.
    Benoit DS, Durney AR, Anseth KS (2006) Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation. Tissue Eng 12(6):1663–1673PubMedGoogle Scholar
  26. 26.
    Nagase H, Fields GB (1996) Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40(4):399–416PubMedGoogle Scholar
  27. 27.
    West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32(1):241–244Google Scholar
  28. 28.
    Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 100(9):5413–5418PubMedCentralPubMedGoogle Scholar
  29. 29.
    Patterson J, Hubbell JA (2010) Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31(30):7836–7845PubMedGoogle Scholar
  30. 30.
    Patterson J, Hubbell JA (2011) SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials 32(5):1301–1310PubMedGoogle Scholar
  31. 31.
    Schense JC, Hubbell JA (1999) Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug Chem 10(1):75–81PubMedGoogle Scholar
  32. 32.
    Soon AS, Stabenfeldt SE, Brown WE, Barker TH (2010) Engineering fibrin matrices: the engagement of polymerization pockets through fibrin knob technology for the delivery and retention of therapeutic proteins. Biomaterials 31(7):1944–1954PubMedCentralPubMedGoogle Scholar
  33. 33.
    Nishi N, Matsushita O, Yuube K, Miyanaka H, Okabe A, Wada F (1998) Collagen-binding growth factors: production and characterization of functional fusion proteins having a collagen-binding domain. Proc Natl Acad Sci USA 95(12):7018–7023PubMedCentralPubMedGoogle Scholar
  34. 34.
    Andrades JA, Han B, Becerra J, Sorgente N, Hall FL, Nimni ME (1999) A recombinant human TGF-beta1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells. Exp Cell Res 250(2):485–498PubMedGoogle Scholar
  35. 35.
    Lin H, Chen B, Sun W, Zhao W, Zhao Y, Dai J (2006) The effect of collagen-targeting platelet-derived growth factor on cellularization and vascularization of collagen scaffolds. Biomaterials 27(33):5708–5714PubMedGoogle Scholar
  36. 36.
    Zhu J, Tang C, Kottke-Marchant K, Marchant RE (2009) Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug Chem 20(2):333–339PubMedCentralPubMedGoogle Scholar
  37. 37.
    Zisch AH, Lutolf MP, Ehrbar M, Raeber GP, Rizzi SC, Davies N, Schmokel H, Bezuidenhout D, Djonov V, Zilla P, Hubbell JA (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 17(15):2260–2262PubMedGoogle Scholar
  38. 38.
    Lin CC, Anseth KS (2009) Controlling affinity binding with peptide-functionalized poly(ethylene glycol) hydrogels. Adv Funct Mater 19(14):2325–2331PubMedCentralPubMedGoogle Scholar
  39. 39.
    Oss-Ronen L, Seliktar D (2011) Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery. Acta Biomater 7(1):163–170PubMedGoogle Scholar
  40. 40.
    Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, Kon E (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 20(6):1182–1191Google Scholar
  41. 41.
    Jeon JE, Vaquette C, Klein TJ, Hutmacher DW (2014) Perspectives in multiphasic osteochondral tissue engineering. Anat Rec (Hoboken) 297(1):26–35Google Scholar
  42. 42.
    Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzman-Morales J (2012) The cartilage-bone interface. J Knee Surg 25(2):85–97PubMedGoogle Scholar
  43. 43.
    Amini AA, Nair LS (2012) Injectable hydrogels for bone and cartilage repair. Biomed Mater 7(2):024105PubMedGoogle Scholar
  44. 44.
    Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657PubMedGoogle Scholar
  45. 45.
    Klein TJ, Rizzi SC, Reichert JC, Georgi N, Malda J, Schuurman W, Crawford RW, Hutmacher DW (2009) Strategies for zonal cartilage repair using hydrogels. Macromol Biosci 9(11):1049–1058Google Scholar
  46. 46.
    Lopa S, Madry H (2014) Bioinspired scaffolds for osteochondral regeneration. Tissue Eng A. doi: 10.1089/ten.tea.2013.0356 Google Scholar
  47. 47.
    Newman AP (1998) Articular cartilage repair. Am J Sports Med 26(2):309–324PubMedGoogle Scholar
  48. 48.
    Moreira-Teixeira LS, Georgi N, Leijten J, Wu L, Karperien M (2011) Cartilage tissue engineering. Cartilage and bone development and its disorders. Endocr Dev 21:102–115PubMedGoogle Scholar
  49. 49.
    Ingavle GC, Gehrke SH, Detamore MS (2014) The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan. Biomaterials 35(11):3558–3570PubMedGoogle Scholar
  50. 50.
    Mhanna R, Ozturk E, Vallmajo-Martin Q, Millan C, Muller M, Zenobi-Wong M (2014) GFOGER-modified MMP-sensitive polyethylene glycol hydrogels induce chondrogenic differentiation of human mesenchymal stem cells. Tissue Eng A 20(7–8):1165–1174Google Scholar
  51. 51.
    Liu SQ, Tian Q, Hedrick JL, Po Hui JH, Ee PL, Yang YY (2010) Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials 31(28):7298–7307PubMedGoogle Scholar
  52. 52.
    Salinas CN, Anseth KS (2008) The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 29(15):2370–2377PubMedCentralPubMedGoogle Scholar
  53. 53.
    Shah RN, Shah NA, Del Rosario Lim MM, Hsieh C, Nuber G, Stupp SI (2010) Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci USA 107(8):3293–3298PubMedCentralPubMedGoogle Scholar
  54. 54.
    Salinas CN, Anseth KS (2009) Decorin moieties tethered into PEG networks induce chondrogenesis of human mesenchymal stem cells. J Biomed Mater Res A 90(2):456–464PubMedGoogle Scholar
  55. 55.
    Connelly JT, Petrie TA, Garcia AJ, Levenston ME (2011) Fibronectin- and collagen-mimetic ligands regulate bone marrow stromal cell chondrogenesis in three-dimensional hydrogels. Eur Cells Mater 22:168–176Google Scholar
  56. 56.
    Elisseeff J, McIntosh W, Fu K, Blunk BT, Langer R (2001) Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res Off Publ Orthop Res Soc 19(6):1098–1104Google Scholar
  57. 57.
    Jin R, Moreira Teixeira LS, Krouwels A, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2010) Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 6(6):1968–1977PubMedGoogle Scholar
  58. 58.
    Moreira Teixeira LS, Leijten JC, Wennink JW, Chatterjea AG, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation. Biomaterials 33(14):3651–3661PubMedGoogle Scholar
  59. 59.
    Jin R, Moreira Teixeira LS, Dijkstra PJ, Zhong Z, van Blitterswijk CA, Karperien M, Feijen J (2010) Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng A 16(8):2429–2440Google Scholar
  60. 60.
    Jin R, Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2010) Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 31(11):3103–3113PubMedGoogle Scholar
  61. 61.
    Jin R, Moreira Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2011) Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J Control Release Off J Control Release Soc 152(1):186–195Google Scholar
  62. 62.
    Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30(13):2544–2551PubMedGoogle Scholar
  63. 63.
    Wang W, Li B, Yang J, Xin L, Li Y, Yin H, Qi Y, Jiang Y, Ouyang H, Gao C (2010) The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 31(34):8964–8973PubMedGoogle Scholar
  64. 64.
    Bian L, Guvendiren M, Mauck RL, Burdick JA (2013) Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proc Natl Acad Sci USA 110(25):10117–10122PubMedCentralPubMedGoogle Scholar
  65. 65.
    Simson JA, Strehin IA, Lu Q, Uy MO, Elisseeff JH (2013) An adhesive bone marrow scaffold and bone morphogenetic-2 protein carrier for cartilage tissue engineering. Biomacromolecules 14(3):637–643PubMedGoogle Scholar
  66. 66.
    Sharma B, Fermanian S, Gibson M, Unterman S, Herzka DA, Cascio B, Coburn J, Hui AY, Marcus N, Gold GE, Elisseeff JH (2013) Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci Transl Med 5(167):167ra166Google Scholar
  67. 67.
    Khanarian NT, Jiang J, Wan LQ, Mow VC, Lu HH (2012) A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng A 18(5–6):533–545Google Scholar
  68. 68.
    Rodrigues MT, Lee SJ, Gomes ME, Reis RL, Atala A, Yoo JJ (2012) Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Acta Biomater 8(7):2795–2806PubMedGoogle Scholar
  69. 69.
    Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release Off J Control Release Soc 134(2):81–90Google Scholar
  70. 70.
    Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH (2006) Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27(7):1071–1080PubMedGoogle Scholar
  71. 71.
    Tampieri A, Sandri M, Landi E, Pressato D, Francioli S, Quarto R, Martin I (2008) Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 29(26):3539–3546PubMedGoogle Scholar
  72. 72.
    Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75(1):156–167PubMedGoogle Scholar
  73. 73.
    Qu D, Li J, Li Y, Khadka A, Zuo Y, Wang H, Liu Y, Cheng L (2011) Ectopic osteochondral formation of biomimetic porous PVA-n-HA/PA6 bilayered scaffold and BMSCs construct in rabbit. J Biomed Mater Res B Appl Biomater 96(1):9–15PubMedGoogle Scholar
  74. 74.
    Miller RE, Grodzinsky AJ, Vanderploeg EJ, Lee C, Ferris DJ, Barrett MF, Kisiday JD, Frisbie DD (2010) Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 18(12):1608–1619Google Scholar
  75. 75.
    Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res Off Publ Orthop Res Soc 28(1):116–124Google Scholar
  76. 76.
    Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41(7):693–701PubMedGoogle Scholar
  77. 77.
    Bhakta G, Lim ZX, Rai B, Lin T, Hui JH, Prestwich GD, van Wijnen AJ, Nurcombe V, Cool SM (2013) The influence of collagen and hyaluronan matrices on the delivery and bioactivity of bone morphogenetic protein-2 and ectopic bone formation. Acta Biomater 9(11):9098–9106PubMedGoogle Scholar
  78. 78.
    Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Noh I, Lee SH, Park Y, Sun K (2007) Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28(10):1830–1837PubMedGoogle Scholar
  79. 79.
    Kisiel M, Klar AS, Martino MM, Ventura M, Hilborn J (2013) Evaluation of injectable constructs for bone repair with a subperiosteal cranial model in the rat. PLoS ONE 8(8):e71683PubMedCentralPubMedGoogle Scholar
  80. 80.
    Bae MS, Ohe JY, Lee JB, Heo DN, Byun W, Bae H, Kwon YD, Kwon IK (2013) Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone 59:189–198PubMedGoogle Scholar
  81. 81.
    Bae MS, Yang DH, Lee JB, Heo DN, Kwon YD, Youn IC, Choi K, Hong JH, Kim GT, Choi YS, Hwang EH, Kwon IK (2011) Photo-cured hyaluronic acid-based hydrogels containing simvastatin as a bone tissue regeneration scaffold. Biomaterials 32(32):8161–8171PubMedGoogle Scholar
  82. 82.
    Patterson J, Siew R, Herring SW, Lin AS, Guldberg R, Stayton PS (2010) Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31(26):6772–6781PubMedCentralPubMedGoogle Scholar
  83. 83.
    Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, Park Y, Sun K, Hwang SJ (2010) In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering. J Biomed Mater Res A 95(3):673–681PubMedGoogle Scholar
  84. 84.
    Tan S, Fang JY, Yang Z, Nimni ME, Han B (2014) The synergetic effect of hydrogel stiffness and growth factor on osteogenic differentiation. Biomaterials 35:5294–5306PubMedGoogle Scholar
  85. 85.
    Hokugo A, Saito T, Li A, Sato K, Tabata Y, Jarrahy R (2014) Stimulation of bone regeneration following the controlled release of water-insoluble oxysterol from biodegradable hydrogel. Biomaterials 35:5565–5571PubMedGoogle Scholar
  86. 86.
    Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, Hubbell JA (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518PubMedGoogle Scholar
  87. 87.
    Mariner PD, Wudel JM, Miller DE, Genova EE, Streubel SO, Anseth KS (2013) Synthetic hydrogel scaffold is an effective vehicle for delivery of INFUSE (rhBMP2) to critical-sized calvaria bone defects in rats. J Orthop Res 31:401–406PubMedCentralPubMedGoogle Scholar
  88. 88.
    Shekaran A, Garcia JR, Clark AY, Kavanaugh TE, Lin AS, Guldberg RE, Garcia AJ (2014) Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 35:5453–5461PubMedGoogle Scholar
  89. 89.
    Martinez-Sanz E, Varghese OP, Kisiel M, Engstrand T, Reich KM, Bohner M, Jonsson KB, Kohler T, Muller R, Ossipov DA, Hilborn J (2012) Minimally invasive mandibular bone augmentation using injectable hydrogels. J Tissue Eng Regen Med 6(Suppl 3):s15–s23PubMedGoogle Scholar
  90. 90.
    Docherty-Skogh AC, Bergman K, Waern MJ, Ekman S, Hultenby K, Ossipov D, Hilborn J, Bowden T, Engstrand T (2010) Bone morphogenetic protein-2 delivered by hyaluronan-based hydrogel induces massive bone formation and healing of cranial defects in minipigs. Plast Reconstr Surg 125(5):1383–1392PubMedGoogle Scholar
  91. 91.
    Hulsart-Billstrom G, Piskounova S, Gedda L, Andersson BM, Bergman K, Hilborn J, Larsson S, Bowden T (2013) Morphological differences in BMP-2-induced ectopic bone between solid and crushed hyaluronan hydrogel templates. J Mater Sci Mater Med 24(5):1201–1209PubMedGoogle Scholar
  92. 92.
    Xu C, Wang Y, Yu X, Chen X, Li X, Yang X, Li S, Zhang X, Xiang AP (2009) Evaluation of human mesenchymal stem cells response to biomimetic bioglass-collagen-hyaluronic acid-phosphatidylserine composite scaffolds for bone tissue engineering. J Biomed Mater Res A 88(1):264–273PubMedGoogle Scholar
  93. 93.
    Xu C, Su P, Wang Y, Chen X, Meng Y, Liu C, Yu X, Yang X, Yu W, Zhang X, Xiang AP (2010) A novel biomimetic composite scaffold hybridized with mesenchymal stem cells in repair of rat bone defects models. J Biomed Mater Res A 95(2):495–503PubMedGoogle Scholar
  94. 94.
    Chen JP, Tsai MJ, Liao HT (2013) Incorporation of biphasic calcium phosphate microparticles in injectable thermoresponsive hydrogel modulates bone cell proliferation and differentiation. Colloids Surf B: Biointerfaces 110:120–129PubMedGoogle Scholar
  95. 95.
    Ma K, Cai X, Zhou Y, Zhang Z, Jiang T, Wang Y (2014) Osteogenic property of a biodegradable three-dimensional macroporous hydrogel coating on titanium implants fabricated via EPD. Biomed Mater 9. doi: 10.1088/1748-6041/9/1/015008
  96. 96.
    Kang SW, Kim JS, Park KS, Cha BH, Shim JH, Kim JY, Cho DW, Rhie JW, Lee SH (2011) Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone 48(2):298–306PubMedGoogle Scholar
  97. 97.
    Hoffman MD, Xie C, Zhang X, Benoit DS (2013) The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials 34(35):8887–8898PubMedGoogle Scholar
  98. 98.
    Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J (2008) Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol J Int Soc Matrix Biol 27(1):12–21Google Scholar
  99. 99.
    Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R (1999) Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 104(4):1014–1022PubMedGoogle Scholar
  100. 100.
    Grayson WL, Chao PH, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26(4):181–189PubMedCentralPubMedGoogle Scholar
  101. 101.
    Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung UI, Takato T, Hoshi K (2006) Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A 78(1):1–11PubMedGoogle Scholar
  102. 102.
    Vashist A, Vashist A, Gupta YK, Ahmad S (2014) Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B 2(2):147–166Google Scholar
  103. 103.
    Melrose J, Chuang C, Whitelock J (2008) Tissue engineering log cartilages using biomatrices. J Chem Technol Biotechnol 83(4):444–463Google Scholar
  104. 104.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351PubMedGoogle Scholar
  105. 105.
    Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4–5):339–359PubMedGoogle Scholar
  106. 106.
    Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233PubMedGoogle Scholar
  107. 107.
    Yu DA, Han J, Kim BS (2012) Stimulation of chondrogenic differentiation of mesenchymal stem cells. Int J Stem Cells 5(1):16–22PubMedCentralPubMedGoogle Scholar
  108. 108.
    Minegishi Y, Hosokawa K, Tsumaki N (2013) Time-lapse observation of the dedifferentiation process in mouse chondrocytes using chondrocyte-specific reporters. Osteoarth Cartil/OARS, Osteoarthr Res Soc 21(12):1968–1975Google Scholar
  109. 109.
    Koelling S, Kruegel J, Irmer M, Path JR, Sadowski B, Miro X, Miosge N (2009) Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 4(4):324–335PubMedGoogle Scholar
  110. 110.
    Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT (2003) The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 11(12):879–890Google Scholar
  111. 111.
    Moreira Teixeira LS, Leijten JC, Sobral J, Jin R, van Apeldoorn AA, Feijen J, van Blitterswijk C, Dijkstra PJ, Karperien M (2012) High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo. Eur Cells Mater 23:387–399Google Scholar
  112. 112.
    Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31(2):108–115PubMedGoogle Scholar
  113. 113.
    Johnson LL, Verioti C, Gelber J, Spector M, D’Lima D, Pittsley A (2011) The pathology of the end-stage osteoarthritic lesion of the knee: potential role in cartilage repair. Knee 18(6):402–406PubMedGoogle Scholar
  114. 114.
    Gawlitta D, Farrell E, Malda J, Creemers LB, Alblas J, Dhert WJ (2010) Modulating endochondral ossification of multipotent stromal cells for bone regeneration. Tissue Eng B Rev 16(4):385–395Google Scholar
  115. 115.
    Malda J, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2003) Cartilage tissue engineering: controversy in the effect of oxygen. Crit Rev Biotechnol 23(3):175–194PubMedGoogle Scholar
  116. 116.
    Leijten JC, Moreira Teixeira LS, Landman EB, van Blitterswijk CA, Karperien M (2012) Hypoxia inhibits hypertrophic differentiation and endochondral ossification in explanted tibiae. PLoS ONE 7(11):e49896PubMedCentralPubMedGoogle Scholar
  117. 117.
    Zhu M, Feng Q, Bian L (2014) Differential effect of hypoxia on human mesenchymal stem cell chondrogenesis and hypertrophy in hyaluronic acid hydrogels. Acta Biomater 10(3):1333–1340PubMedGoogle Scholar
  118. 118.
    Weiss HE, Roberts SJ, Schrooten J, Luyten FP (2012) A semi-autonomous model of endochondral ossification for developmental tissue engineering. Tissue Eng A 18(13–14):1334–1343Google Scholar
  119. 119.
    Moreira Teixeira LS, Bijl S, Pully VV, Otto C, Jin R, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair. Biomaterials 33(11):3164–3174PubMedGoogle Scholar
  120. 120.
    Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z (2013) Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics 36(11):868–873PubMedGoogle Scholar
  121. 121.
    Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A (2006) A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 13(3):203–210PubMedGoogle Scholar
  122. 122.
    Marlovits S, Zeller P, Singer P, Resinger C, Vecsei V (2006) Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 57(1):24–31PubMedGoogle Scholar
  123. 123.
    Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov S, Khademhosseini A (2011) Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater 7(4):1441–1451Google Scholar
  124. 124.
    Re’em T, Witte F, Willbold E, Ruvinov E, Cohen S (2012) Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-beta and BMP-4 in a bilayer affinity binding system. Acta Biomater 8(9):3283–3293PubMedGoogle Scholar
  125. 125.
    Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng A 17(21–22):2845–2855Google Scholar
  126. 126.
    Baldini A, Zaffe D, Nicolini G (2010) Bone-defects healing by high-molecular hyaluronic acid: preliminary results. Ann Stomatol (Roma) 1(1):2–7Google Scholar
  127. 127.
    Ballini A, Cantore S, Capodiferro S, Grassi FR (2009) Esterified hyaluronic acid and autologous bone in the surgical correction of the infra-bone defects. Int J Med Sci 6(2):65–71PubMedCentralPubMedGoogle Scholar
  128. 128.
    Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1):65–74PubMedCentralPubMedGoogle Scholar
  129. 129.
    Diab T, Pritchard EM, Uhrig BA, Boerckel JD, Kaplan DL, Guldberg RE (2012) A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects. J Mech Behav Biomed Mater 11:123–131PubMedCentralPubMedGoogle Scholar
  130. 130.
    Sonnet C, Simpson CL, Olabisi RM, Sullivan K, Lazard Z, Gugala Z, Peroni JF, Weh JM, Davis AR, West JL, Olmsted-Davis EA (2012) Rapid healing of femoral defects in rats with low dose sustained BMP2 expression from PEGDA hydrogel microspheres. J Orthop Res 31:1597–1604Google Scholar
  131. 131.
    Killion JA, Geever LM, Devine DM, Higginbotham CL (2014) Fabrication and in vitro biological evaluation of photopolymerisable hydroxyapatite hydrogel composites for bone regeneration. J Biomater Appl 28(8):1274–1283PubMedGoogle Scholar
  132. 132.
    Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86PubMedGoogle Scholar
  133. 133.
    Kino-Oka M, Ogawa N, Umegaki R, Taya M (2005) Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner. Tissue Eng 11(3–4):535–545PubMedGoogle Scholar
  134. 134.
    Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765PubMedGoogle Scholar
  135. 135.
    Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G (2002) Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng 8(2):175–188PubMedGoogle Scholar
  136. 136.
    Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D (2005) Bioreactor cultivation of osteochondral grafts. Orthod Craniofac Res 8(3):209–218PubMedGoogle Scholar
  137. 137.
    Spitters TW, Leijten JC, Deus FD, Costa IB, van Apeldoorn AA, van Blitterswijk CA, Karperien M (2013) A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering. Tissue Eng C Methods 19(10):774–783Google Scholar
  138. 138.
    Mahmoudifar N, Doran PM (2013) Osteogenic differentiation and osteochondral tissue engineering using human adipose-derived stem cells. Biotechnol Prog 29(1):176–185PubMedGoogle Scholar
  139. 139.
    Grayson WL, Bhumiratana S, Grace Chao PH, Hung CT, Vunjak-Novakovic G (2010) Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthr cartil/OARS, Osteoarthr Res Soc 18(5):714–723Google Scholar
  140. 140.
    LeBaron RG, Athanasiou KA (2000) Ex vivo synthesis of articular cartilage. Biomaterials 21(24):2575–2587PubMedGoogle Scholar
  141. 141.
    Papantoniou Ir I, Chai YC, Luyten FP, Schrooten Ir J (2013) Process quality engineering for bioreactor-driven manufacturing of tissue-engineered constructs for bone regeneration. Tissue Eng C Methods 19(8):596–609Google Scholar
  142. 142.
    Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F, Madry H, Mata A, Mauck RL, Semino CE, Stoddart MJ (2013) Tissue engineering for articular cartilage repair—the state of the art. Eur Cell Mater 25:248–267PubMedGoogle Scholar
  143. 143.
    Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, Vandekerckhove B, Almqvist KF, Claes T, Handelberg F, Lagae K, van der Bauwhede J, Vandenneucker H, Yang KG, Jelic M, Verdonk R, Veulemans N, Bellemans J, Luyten FP (2008) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36(2):235–246Google Scholar
  144. 144.
    Axelrad TW, Einhorn TA (2009) Bone morphogenetic proteins in orthopaedic surgery. Cytokine Growth Factor Rev 20(5–6):481–488PubMedGoogle Scholar
  145. 145.
    Bostrom MP, Saleh KJ, Einhorn TA (1999) Osteoinductive growth factors in preclinical fracture and long bone defects models. Orthop Clin N Am 30(4):647–658Google Scholar
  146. 146.
    Elisseeff J, Puleo C, Yang F, Sharma B (2005) Advances in skeletal tissue engineering with hydrogels. Orthod Craniofacial Res 8(3):150–161Google Scholar
  147. 147.
    Vinatier C, Guicheux J, Daculsi G, Layrolle P, Weiss P (2006) Cartilage and bone tissue engineering using hydrogels. Biomed Mater Eng 16(4 Suppl):S107–S113PubMedGoogle Scholar
  148. 148.
    Schneider U, Rackwitz L, Andereya S, Siebenlist S, Fensky F, Reichert J, Loer I, Barthel T, Rudert M, Noth U (2011) A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am J Sports Med 39(12):2558–2565PubMedGoogle Scholar
  149. 149.
    Erben RG, Silva-Lima B, Reischl I, Steinhoff G, Tiedemann G, Dalemans W, Vos A, Janssen RT, Le Blanc K, van Osch GP, Luyten FP (2014) White paper on how to go forward with cell-based advanced therapies in Europe. Tissue Eng A. doi: 10.1089/ten.TEA.2013.0589 Google Scholar

Copyright information

© SICOT aisbl 2014

Authors and Affiliations

  • Liliana S. Moreira Teixeira
    • 1
  • Jennifer Patterson
    • 1
    • 2
  • Frank P. Luyten
    • 1
    • 3
  1. 1.Prometheus, Division of Skeletal Tissue EngineeringKU LeuvenLeuvenBelgium
  2. 2.Department of Materials EngineeringKU LeuvenLeuvenBelgium
  3. 3.Skeletal Biology & Engineering Research CenterKU LeuvenLeuvenBelgium

Personalised recommendations