Skip to main content
Log in

Toward the interpretation of the combined effect of size and body weight on the tribological performance of total knee prostheses

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The research questions of the present study were: (1) Is total knee prosthesis wear behaviour influenced by implant size, body weight and their combined effect? (2) Are these findings significant and helpful from a clinical point of view?

Methods

Two very different sizes of the same total knee prosthesis (TKP), previously tested with ISO 14243 parameters, were tested on a knee simulator for a further two million cycles using a modified ISO 14243 load waveform. Roughness examination was performed on the metallic components. Gravimetric and micro-Raman spectroscopic analyses were carried out on the polyethylene inserts.

Results

The average volumetric mass loss was 69 ± 3 mm3 and 88 ± 4 mm3 for smaller and bigger size, respectively. Bigger TKPs are little influenced by an increased load, while the wear trend of the smaller TKP showed a redoubled slope, and more significant morphology changes were observed. However, the two sizes seem to behave similarly when subjected to a load increase of 15 %; the slope of the volumetric mass loss trend was comparable for the two sets of inserts, which did not appear significantly different also at the molecular level. Roughness average parameters of the lateral femoral condyle support this evidence.

Conclusions

It can be asserted that the body weight and implant size are relevant to the understanding of TKP wear behaviour. A post-implantation body weight increase in a patient with smaller knee dimensions could results in more critical effects on prosthesis long-term performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carr AJ, Robertsson O, Graves S, Price AJ, Arden NK, Judge A et al (2012) Knee replacement. Lancet 379:1331–1340

    Article  PubMed  Google Scholar 

  2. RIPO (2010) Register of the Orthopaedic Prosthetic Implants. Available from: https://ripo.cineca.it/. Cited May 2012

  3. Falez F (2014) Knee arthroplasty today. Int Orthop. doi:10.1007/s00264-013-2274-x

    Google Scholar 

  4. Benson LC, DesJardins JD, LaBerge M (2001) Effects of in vitro wear of machined and molded UHMWPE tibial inserts on TKR kinematics. J Biomed Mater Res (Appl Biomat) 58:496–504

    Article  CAS  Google Scholar 

  5. DesJardins JD, Walker PS, Haider H, Perry J (2000) The use of a force controlled dynamic knee simulator to quantify the mechanical performance of total knee replacement designs during functional activity. J Biomech 33:1231–1241

    Article  CAS  PubMed  Google Scholar 

  6. Kretzer JP, Jakubowitz E, Reinders J, Lietz E, Moradi B, Hofmann K et al (2011) Wear analysis of unicondylar mobile bearing and fixed bearing knee systems: a knee simulator study. Acta Biomater 7:710–715

    Article  PubMed  Google Scholar 

  7. Essner A, Herrera L, Hughes P, Kester M (2011) The influence of material and design on total knee replacement wear. J Knee Surg 24:9–17

    Article  PubMed  Google Scholar 

  8. Affatato S, Bracco P, Sudanese A (2013) In vitro wear assessments of fixed and mobile UHMWPE total knee replacement. Mater Des 48:44–51

    Article  CAS  Google Scholar 

  9. Grupp TM, Kaddick C, Schwiesau J, Maas A, Stulberg SD (2009) Fixed and mobile bearing total knee arthroplasty—Influence on wear generation, corresponding wear areas, knee kinematics and particle composition. Clin Biomech 24:210–217

    Article  CAS  Google Scholar 

  10. McEwen HM, Barnett PI, Bell CJ, Farrar R, Auger DD, Stone MH et al (2005) The influence of design, materials and kinematics on the in vitro wear of total knee replacements. J Biomech 38:357–365

    Article  CAS  PubMed  Google Scholar 

  11. Howcroft DWJ, Fehily MJ, Peck C, Fox A, Dillon B, Johnson DS (2006) The role of preoperative templating in total knee arthroplasty: comparison of three prostheses. Knee 13:427–429

    Article  CAS  PubMed  Google Scholar 

  12. van den Heever D, Scheffer C, Erasmus P, Dillon E (2011) Method for selection of femoral component in total knee arthroplasty (tka). Australas Phys Eng Sci Med 34:23–30

    Article  PubMed  Google Scholar 

  13. Callaghan JJ, Insall JN, Greenwald AS, Dennis DA, Komistek RD, Murray DW et al (2001) Mobile-bearing knee replacement- concept and results. Instr Course Lect 50:431–449

    CAS  PubMed  Google Scholar 

  14. Huang CH, Ma HM, Lee YM, Ho FY (2003) Long-term results of low contact stress mobile-bearing total knee replacements. Clin Orthop Relat Res 416:265–270

    Article  PubMed  Google Scholar 

  15. Huang C-H, Liau J-J, Cheng C-K (2007) Fixed or mobile-bearing total knee arthroplasty. J Orthop Surg 2:1–8

    Google Scholar 

  16. McEwen HMJ, Barnett PI, Bell CJ, Farrar R, Auger DD, Stone MH et al (2005) The influence of design, materials and kinematics on in vitro tkr wear. J Biomech 38:357–365

    Article  CAS  PubMed  Google Scholar 

  17. Wang A, Stark C, Dumbleton JH (1996) Mechanistic and morphological origins of ultra-high molecular weight polyethylene wear debris in total joint replacement prostheses. Proc Inst Mech Eng H 210:137–140

    Article  Google Scholar 

  18. Mazzucco D, Spector M (2003) Effects of contact area and stress on the volumetric wear of ultrahigh molecular weight polyethylene. Wear 254:514–522

    Article  CAS  Google Scholar 

  19. Berry DJ, Currier JH, Mayor MB, Collier JP (2012) Knee wear measured in retrievals: a polished tray reduces insert wear. Clin Orthop Relat Res 470:1860–1868

    Article  PubMed Central  PubMed  Google Scholar 

  20. Strickland MA, Dresslerb MR, Taylor M (2012) Predicting implant UHMWPE wear in-silico: A robust, adaptable computational–numerical framework for future theoretical models. Wear 274–275:100–108

    Article  Google Scholar 

  21. Affatato S, Cristofolini L, Leardini W, Erani P, Zavalloni M, Tigani D et al (2008) A new method of in vitro wear assessment of the UHMWPE tibial insert in total knee replacement. Artif Organs 32:942–948

    Article  PubMed  Google Scholar 

  22. Kelly NH, Fu RH, Wright TM, Padgett DE (2011) Wear damage in mobile-bearing TKA is as severe as that in fixed-bearing TKA. Clin Orthop Relat Res 469:123–130

    Article  PubMed Central  PubMed  Google Scholar 

  23. Berend ME, Small SR, Ritter MA, Buckley CA, Merk JC, Dierking WK (2010) Effects of femoral component size on proximal tibial strain with anatomic graduated components total knee arthroplasty. J Arthroplasty 25:58–63

    Article  PubMed  Google Scholar 

  24. Pellengahr C, Müller PE, Dürr HR, Maier M, Birkenmaier C, Mazoochian F et al (2005) The influence of the implant size on the outcome of unconstrained total knee arthroplasty. Acta Chir Belg 105:508–510

    CAS  PubMed  Google Scholar 

  25. Hitt K, SI JR, Greene K, McCarthy J, Moskal J, Hoeman T et al (2003) Anthropometric measurements of the human knee: correlation to the sizing of current knee arthroplasty systems. J Bone Joint Surg Am 85-A Suppl:115–122

    Google Scholar 

  26. Cooper C, Inskip H, Croft P, Campbell L, Smith G, McLaren M et al (1998) Individual risk factors for hip osteoarthritis: obesity, hip injury, and physical activity. Am J Epidemiol 147:516–522

    Article  CAS  PubMed  Google Scholar 

  27. Andrew JG, Palan J, Kurup HV, Gibson P, Murray DW, Beard DJ (2008) Obesity in total hip replacement. J Bone Joint Surg Br 90:424–429

    Article  CAS  PubMed  Google Scholar 

  28. Wendelboe AM, Hegmann KT, Biggs JJ, Cox CM, Portmann AJ, Gildea JH et al (2003) Relationships between body mass indices and surgical replacements of knee and hip joints. Am J Prev Med 25:290–295

    Article  PubMed  Google Scholar 

  29. D'Lima DD, Steklov N, Patil S, Colwell CW Jr (2008) In vivo knee forces during recreation and exercise after knee arthroplasty. Clin Orthop Relat Res 488:2605–2611

    Article  Google Scholar 

  30. Affatato S, Grillini L, Battaglia S, Taddei P, Modena E, Sudanese A (2013) Does knee implant size affect wear variability? Tribol Int 66:174–181

    Article  CAS  Google Scholar 

  31. Taddei P, Modena E, Grupp TM, Affatato S (2011) Mobile or fixed unicompartmental knee prostheses? In-vitro wear assessments to solve this dilemma. J Mech Behav Biomed Mater 4:1936–1946

    Article  CAS  PubMed  Google Scholar 

  32. Affatato S, Leardini W, Rocchi M, Toni A, Viceconti M (2008) Investigation on wear of knee prostheses under fixed kinematic conditions. Artif Organs 32:13–18

    Article  PubMed  Google Scholar 

  33. Affatato S, Spinelli M, Zavalloni M, Carmignato S, Lopomo N, Marcacci M et al (2008) Unicompartmental knee prostheses: in vitro wear assessment of the menisci tibial insert after two different fixation methods. Phys Med Biol 53:5357–5369

    Article  CAS  PubMed  Google Scholar 

  34. Carmignato S, Spinelli M, Affatato S, Savio E (2011) Uncertainty evaluation of volumetric wear assessment from coordinate measurements of ceramic hip joint prostheses. Wear 270:584–590

    Article  CAS  Google Scholar 

  35. Affatato S, Bersaglia G, Junqiang Y, Traina F, Toni A, Viceconti M (2006) The predictive power of surface profile parameters on the amount of wear measured in vitro on metal-on-polyethylene artificial hip joints. Proc Inst Mech Eng H 220:457–464

    Article  CAS  PubMed  Google Scholar 

  36. Dagnall H (1998) Exploring surface texture, 3rd edn. Taylor Hobson, Leicester

    Google Scholar 

  37. Strobl GR, Hagedorn W (1978) Raman spectroscopic method for determining the crystallinity of polyethylene. J Polym Sci Polym Phys Ed 16:1181–1193

    Article  CAS  Google Scholar 

  38. Kurelec L, Rastogi S, Meier RJ, Lemstra PJ (2000) Chain mobility in polymer systems: on the borderline between solid and melt. 3. Phase transformations in nascent ultra high molecular weight polyethylene reactor powder at elevated pressure as revealed by in-situ Raman spectroscopy. Macromolecules 33:5593–5601

    Article  CAS  Google Scholar 

  39. Luu DV, Cambon L, Lapeyre C (1980) Caractérisation des phases dans le polyéthylène par effet Raman. J Raman Spectrosc 9:172–175

    Article  Google Scholar 

  40. Bartel DL, Bicknell VL, Wright TM (1986) The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement. J Bone Joint Surg Am 68:1041–1051

    CAS  PubMed  Google Scholar 

  41. Plante-Bordeneuve P, Freeman MA (1993) Tibial high-density polyethylene wear in conforming tibiofemoral prostheses. J Bone Joint Surg (Br) 75:630–636

    CAS  Google Scholar 

  42. Lewis RB (1964) Predicting wear on sliding plastic surfaces. Mech Eng 86:32–35

    CAS  Google Scholar 

  43. Wang A, Sun DC, Yau S-S, Edwards B, Sokol M, Essner A et al (1997) Orientation softening in the deformation and wear of ultra-high molecular weight polyethylene. Wear 203–204:230–241

    Article  Google Scholar 

  44. Davey SM, Orr JF, Buchanan FJ, Nixon JR, Bennett D (2005) The effect of patient gait on the material properties of UHMWPE in hip replacements. Biomaterials 26:4993–5001

    Article  CAS  PubMed  Google Scholar 

  45. Kang L, Galvin AL, Fisher J, Jin J (2009) Enhanced computational prediction of polyethylene wear in hip joints by incorporating cross-shear and contact pressure in additional to load and sliding distance: effect of head diameter. J Biomech 42:912–918

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Laura Grillini for her help during the experiment. This work was partially supported by the Italian Program of Donation for Research "5per mille", year 2010.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saverio Affatato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battaglia, S., Taddei, P., Tozzi, S. et al. Toward the interpretation of the combined effect of size and body weight on the tribological performance of total knee prostheses. International Orthopaedics (SICOT) 38, 1183–1190 (2014). https://doi.org/10.1007/s00264-014-2297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2297-y

Keywords

Navigation