International Orthopaedics

, Volume 38, Issue 6, pp 1321–1328 | Cite as

The effect of platelet-rich plasma on osteochondral defects treated with mosaicplasty

  • Egemen AltanEmail author
  • Kerem Aydin
  • Omer Erkocak
  • Hakan Senaran
  • Serdar Ugras
Original Paper



This study investigated the efficacy of platelet-rich plasma (PRP) on articular surfaces on which the mosaicplasty technique was performed. Our hypothesis was that PRP can accelerate the osseointegration process and enhance the quality of articular integrity after the mosaicplasty procedure.


Standard defects were created in the femoral groove of both patellofemoral joints of 12 New Zealand rabbits. PRP solution was placed inside the defect before fixation of the osteochondral autografts and injected inside the involved joint after capsular closure of the tested knees. The contralateral knees served as the control sides. The animals were euthanized three or six weeks after mosaicplasty, and both limbs were assessed according to Pineda’s histological grading scale. Significance level was set at p ≤ 0.05 a priori, and the Mann–Whitney U test was used for statistical analysis.


Histologic findings at the interface between the transferred autograft and the original cartilage revealed better integration of the adjacent surfaces in the mosaicplasty with PRP group three weeks after the procedure; the difference was significant (p < 0.05). However, no significant difference in the transition zone was observed between the groups six weeks after the experiment (p = 0.59).


Our animal model showed that adjunctive use of PRP produced a better healing response and resulted in superior histological scores after three weeks compared with the mosaicplasty-only procedure. Interpretation of our results is important in terms of rapid return to previous activity levels. Thus, application of PRP can represent a valid therapeutic option for improving the efficacy of mosaicplasty by stimulating the local healing response.


Platelet-rich plasma Osteochondral defect Mosaicplasty Cartilage 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Heir S, Nerhus TK, Rotterud JH, Loken S, Ekeland A, Engebretsen L, Aroen A (2010) Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am J Sports Med 38(2):231–237PubMedCrossRefGoogle Scholar
  2. 2.
    Buckwalter JA, Mankin HA (1998) Articular cartilage repair and transplantation. Arthritis Rheum 41:1331–1342PubMedCrossRefGoogle Scholar
  3. 3.
    Bartlett W, Skinner JA, Gooding CR, Carrington RW, Flanagan AM, Briggs TW, Bentley G (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 87(5):640–645PubMedCrossRefGoogle Scholar
  4. 4.
    Bentley G, Biant LC, Carrington RW, Akmal M, Goldberg A, Williams AM, Skinner JA, Pringle J (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 85(2):223–230PubMedCrossRefGoogle Scholar
  5. 5.
    Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ (1999) The microfracture technic in the management of complete cartilage defects in the knee joint. Orthopade 28:26e32Google Scholar
  6. 6.
    Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A (2002) Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 30:2e12Google Scholar
  7. 7.
    Altan E, Senaran H, Acar MA, Aydın K, Ozbaydar MU (2013) Mozaicplasty technique for treatment of reverse Hill-Sachs lesion. Tech Should Elbow Surg 14:1–4. doi: 10.1097/BTE.0b013e318274962c Google Scholar
  8. 8.
    Marcacci M, Kon E, Zaffagnini S, Iacono F, Neri MP, Vascellari A et al (2005) Multiple osteochondral arthroscopic grafting (mosaicplasty) for cartilage defects of the knee: prospective study results at 2-year follow-up. Arthroscopy 21(4):462–470PubMedCrossRefGoogle Scholar
  9. 9.
    Borzini P, Mazzucco L (2005) Tissue regeneration and in loco administration of platelet derivatives: clinical outcome, heterogeneous products, and heterogeneity of the effector mechanisms. Transfusion 45:1759e67CrossRefGoogle Scholar
  10. 10.
    Borazjani BH, Chen AC, Bae WC et al (2006) Effect of impact on chondrocyte viability during insertion of human osteochondral grafts. J Bone Joint Surg Am 88(9):1934–1943PubMedCrossRefGoogle Scholar
  11. 11.
    Gulotta LV, Rudzki JR, Kovacevic D, Chen CC, Milentijevic D, Williams RJ 3rd (2009) Chondrocyte death and cartilage degradation after autologous osteochondral transplantation surgery in a rabbit model. Am J Sports Med 37(7):1324–1333PubMedCrossRefGoogle Scholar
  12. 12.
    Hangody L, Kish G, Karapati Z, Eberhart R (1997) Osteochondral plugs: Autogenous osteochondral mosaicplasty for the treatment of focal chondral and osteochondral articular defects. Oper Tech Orthop 7:312–322CrossRefGoogle Scholar
  13. 13.
    Pecina M, Jelic M, Martinovic S, Haspl M, Vukicevic S (2002) Articular cartilage repair: the role of bone morphogenetic proteins. Int Orthop 26:131–136PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Borovecki F, Pecina Slaus N, Vukicevic S (2007) Biological mechanisms of bone and cartilage remodelling-genomic perspective. Int Orthop 31:799–805PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Griffin XL, Smith CM, Costa ML (2009) The clinical use of platelet rich plasma in the promotion of bone healing: A systematic review. Injury 40:158–162PubMedCrossRefGoogle Scholar
  16. 16.
    Akeda K, An HS, Okuma M, Attawia M, Miyamoto K, Thonar EJ et al (2006) Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthr Cartil 14:1272–1280PubMedCrossRefGoogle Scholar
  17. 17.
    Wu W, Chen F, Liu Y, Ma Q, Mao T (2007) Autologous injectable tissue-engineered cartilage by using platelet-rich plasma: Experimental study in a rabbit model. J Oral Maxillofac Surg 65:1951–1957PubMedCrossRefGoogle Scholar
  18. 18.
    Dold A, Zywiel M, Taylor DW, Dwyer T, Theodoropoulos J (2014) Platelet-rich plasma in the management of articular cartilage pathology: a systematic review. Clin J Sport Med 24(1):31–43. doi: 10.1097/01.jsm.0000432855.85143.e5 PubMedGoogle Scholar
  19. 19.
    Sun Y, Feng Y, Zhang CQ, Chen SB, Cheng XG (2010) The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int Orthop 34(4):589–597PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Nam EK, Makhsous M, Koh J, Bowen M, Nuber G, Zhang LQ (2004) Biomechanical and histological evaluation of osteochondral transplantation in a rabbit model. Am J Sports Med 32(2):308–316PubMedCrossRefGoogle Scholar
  21. 21.
    Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI et al (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 76:579–592PubMedGoogle Scholar
  22. 22.
    DeLong JM, Russell RP, Mazzocca AD (2012) Platelet-rich plasma: the PAW classification system. Arthroscopy 28(7):998–1009PubMedCrossRefGoogle Scholar
  23. 23.
    Saito M, Takahashi KA, Arai Y, Inoue A, Sakao K, Tonomura H et al (2009) Intraarticular administration of platelet-rich plasma with biodegradable gelatin hydrogel microspheres prevents osteoarthritis progression in the rabbit knee. Clin Exp Rheumatol 27:201–207PubMedGoogle Scholar
  24. 24.
    Milano G, Deriu L, Passino ES, Masala G, Manunta A, Postacchini R et al (2012) Repeated platelet concentrate injections enhance reparative response of microfractures in the treatment of chondral defects of the knee: an experimental study in an animal model. Arthroscopy 28(5):688–701PubMedCrossRefGoogle Scholar
  25. 25.
    O’Driscoll SW, Keeley FW, Salter RB (1986) The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. J Bone Joint Surg Am 68(7):1017–1035PubMedGoogle Scholar
  26. 26.
    Drengk A, Zapf A, Sturmer EK, Sturmer KM, Frosch KH (2009) Influence of platelet-rich plasma on chondrogenic differentiation and proliferation of chondrocytes and mesenchymal stem cells. Cells Tissues Organs 189(5):317–326PubMedCrossRefGoogle Scholar
  27. 27.
    Whiteside RA, Jakob RP, Wyss UP, Mainil-Varlet P (2005) Impact loading of articular cartilage during transplantation of osteochondral autograft. J Bone Joint Surg Br 87(9):1285–1291PubMedCrossRefGoogle Scholar
  28. 28.
    Baumbach K, Petersen JP, Ueblacker P et al (2008) The fate of osteochondral grafts after autologous osteochondral transplantation: a one-year follow-up study in a minipig model. Arch Orthop Trauma Surg 128:1255–1263PubMedCrossRefGoogle Scholar
  29. 29.
    Tibesku CO, Szuwart T, Kleffner TO et al (2004) Hyaline cartilage degenerates after autologous osteochondral transplantation. J Orthop Res 22(6):1210–1214PubMedCrossRefGoogle Scholar
  30. 30.
    Hurtig M, Pearce S, Warren S, Kalra M, Miniaci A (2001) Arthroscopic mosaic arthroplasty in the equine third carpal bone. Vet Surg 30:228–239PubMedCrossRefGoogle Scholar
  31. 31.
    Chen L, Yang X, Huang G et al (2013) Platelet-rich plasma promotes healing of osteoporotic fractures. Orthopedics 36(6):e687–e694PubMedCrossRefGoogle Scholar
  32. 32.
    Arpornmaeklong P, Kochel M, Depprich R, Kübler NR, Würzler KK (2004) Influence of platelet-rich plasma (PRP) on osteogenic differentiation of rat bone marrow stromal cells. An in vitro study. Int J Oral Maxillofac Surg 33(1):60–70PubMedCrossRefGoogle Scholar
  33. 33.
    Dallari D, Savarino L, Stagni C et al (2007) Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells. J Bone Joint Surg Am 89:2413–2420PubMedCrossRefGoogle Scholar
  34. 34.
    Castricini R, Longo U, de Benedetto M et al (2011) Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: A randomized controlled trial. Am J Sports Med 39:258–265PubMedCrossRefGoogle Scholar
  35. 35.
    Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V et al (2009) Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng Part C Methods 15:431–435PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Milano G, Passino ES, Deriu L et al (2010) The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: An experimental study in a sheep model. Osteoarthritis Cartilage 18:971–980PubMedCrossRefGoogle Scholar
  37. 37.
    Qi YY, Chen X, Jiang YZ et al (2009) Local delivery of autologous platelet in collagen matrix simulated in situ articular cartilage repair. Cell Transplant 18:1161–1169PubMedCrossRefGoogle Scholar
  38. 38.
    Kon E, Filardo G, Delcogliano M et al (2010) Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskelet Disord 11:220PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Brehm W, Aklin B, Yamashita T et al (2006) Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthritis Cartilage 14:1214–1226PubMedCrossRefGoogle Scholar
  40. 40.
    Weibrich G, Kleis WK, Hitzler WE, Hafner G (2005) Comparison of the platelet concentrate collection system with the plasma-rich-in-growth-factors kit to produce platelet-rich plasma: a technical report. Int J Oral Maxillofac Implants 20:118e23Google Scholar
  41. 41.
    Leitner GC, Gruber R, Neumüller J, Wagner A, Kloimstein P, Höcker P et al (2006) Platelet content and growth factor release in platelet-rich plasma: a comparison of four different systems. Vox Sang 91:135–139PubMedCrossRefGoogle Scholar
  42. 42.
    Pettersson S, Wetterö J, Tengvall P, Kratz GJ (2009) Human articular chondrocytes on macroporous gelatin microcarriers form structurally stable constructs with blood-derived biological glues in vitro. Tissue Eng Regen Med 3(6):450–460CrossRefGoogle Scholar
  43. 43.
    Sheth U, Simunovic N, Klein G et al (2012) Efficacy of autologous platelet-rich plasma use for orthopaedic indications: A meta-analysis. J Bone Joint Surg Am 94:298–307PubMedCrossRefGoogle Scholar
  44. 44.
    Marx RE (2004) Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg 62:489–496PubMedCrossRefGoogle Scholar
  45. 45.
    Hui JH, Chen F, Thambyah A, Lee EH (2004) Treatment of chondral lesions in advanced osteochondritis dissecans: a comparative study of the efficacy of chondrocytes, mesenchymal stem cells, periosteal graft, and mosaicplasty (osteochondral autograft) in animal models. J Pediatr Orthop 24(4):427–433PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Egemen Altan
    • 1
    Email author
  • Kerem Aydin
    • 1
  • Omer Erkocak
    • 1
  • Hakan Senaran
    • 1
  • Serdar Ugras
    • 1
  1. 1.Department of Orthopaedics and TraumatologySelcuk UniversityKonyaTurkey

Personalised recommendations