Skip to main content

Advertisement

Log in

Establishment of a new methicillin resistant staphylococcus aureus animal model of osteomyelitis

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The increase in methicillin-resistant Staphylococcus aureus (MRSA) infections is currently a major health care problem. Vancomycin is still often the first-line anti-microbiological agent for treating such infections; however, a recent decline in efficacy of vancomycin in MRSA infections has raised concerns and accelerated the search for new antibiotics. The aim of this study was to establish a MRSA peri-implant osteomyelitis animal model for future testing of new anti-microbiological agents under typical MRSA infection conditions.

Methods

Eighteen randomised NZW-rabbits underwent a standardised surgical procedure with the insertion of a femoral bone implant. Animals were then divided into group 1 (MRSA inoculation, no antibiotics; M/N), group 2 (MRSA inoculation, Vancomyin; M/V), and group 3 (no MRSA inoculation, no antibiotics; N/N). The primary study outcome parameters were animal leucocyte count, animal weight, and animal body temperature at one, seven, and 42 days after surgery. Additionally, a histo-morphometrical score was established and adjusted to a modified histological Smeltzer score.

Results

Macroscopic and histo-morphometrical findings showed a peri-implant osteomyelitis in group 1 with both increased acute and chronic infection parameters in M/N, as compared to M/V and N/N, indicating that vancomycin treatment prevented typical morphological changes of MRSA peri-implant osteomyelitis. Similarly, there was a reduction in animal weight and increase in leucocyte count and body temperature in group 1 (each p < 0.005). Vancomycin treatment again resulted in significantly reduced leucocyte count and body temperature, and increased animal body weight.

Conclusions

Here we have established a peri-implant MRSA osteomyelitis model that successfully combined clinical and laboratory outcome parameters of infection with histo-morphometrical results; this model appears to be valuable for future experimental use and therapeutic monitoring of new anti-microbiological MRSA drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geffers C, Gastmeier P (2011) Nosocomial infections and multidrug-resistant organisms in Germany: epidemiological data from KISS (the hospital infection surveillance system). Deutsches Arzteblatt Int 108:87–93. doi:10.3238/arztebl.2011.0087

    Google Scholar 

  2. Walter G, Kemmerer M, Kappler C, Hoffmann R (2012) Treatment algorithms for chronic osteomyelitis. Deutsches Arzteblatt Int 109:257–264. doi:10.3238/arztebl.2012.0257

    Google Scholar 

  3. Oliveira DC, Tomasz A, de Lencastre H (2002) Secrets of success of a human pathogen: molecular evolution of pandemic clones of methicillin-resistant Staphylococcus aureus. Lancet Infect Dis 2:180–189

    Article  PubMed  CAS  Google Scholar 

  4. Ramirez P, Fernandez-Barat L, Torres A (2012) New therapy options for MRSA with respiratory infection/pneumonia. Curr Opin Infect Dis 25:159–165. doi:10.1097/QCO.0b013e3283509cfa

    Article  PubMed  CAS  Google Scholar 

  5. Rice DA, Mendez-Vigo L (2009) Daptomycin in bone and joint infections: a review of the literature. Arch Orthop Trauma Surg 129:1495–1504. doi:10.1007/s00402-008-0772-x

    Article  PubMed Central  PubMed  Google Scholar 

  6. Esposito S, Leone S (2008) Prosthetic joint infections: microbiology, diagnosis, management and prevention. Int J Antimicrob Agents 32:287–293. doi:10.1016/j.ijantimicag.2008.03.010

    Article  PubMed  CAS  Google Scholar 

  7. Parvizi J, Zmistowski B, Berbari EF, Bauer TW, Springer BD, Della Valle CJ, Garvin KL, Mont MA, Wongworawat MD, Zalavras CG (2011) New definition for periprosthetic joint infection: from the workgroup of the musculoskeletal infection society. Clin Orthop Relat Res 469:2992–2994. doi:10.1007/s11999-011-2102-9

    Article  PubMed Central  PubMed  Google Scholar 

  8. Johnson AJ, Zywiel MG, Stroh A, Marker DR, Mont MA (2011) Serological markers can lead to false negative diagnoses of periprosthetic infections following total knee arthroplasty. Int Orthop 35:1621–1626. doi:10.1007/s00264-010-1175-5

    Article  PubMed Central  PubMed  Google Scholar 

  9. Wimmer MD, Randau TM, Petersdorf S, Pagenstert GI, Weisskopf M, Wirtz DC, Gravius S (2013) Evaluation of an interdisciplinary therapy algorithm in patients with prosthetic joint infections. Int Orthop. doi:10.1007/s00264-013-1995-1

    PubMed  Google Scholar 

  10. Schroeder K, Simank HG, Lorenz H, Swoboda S, Geiss HK, Helbig L (2012) Implant stability in the treatment of MRSA bone implant infections with linezolid versus vancomycin in a rabbit model. J Orthop Res Off Publ Orthop Res Soc 30:190–195. doi:10.1002/jor.21516

    Article  CAS  Google Scholar 

  11. Simank HG, Stuber M, Frahm R, Helbig L, van Lenthe H, Muller R (2006) The influence of surface coatings of dicalcium phosphate (DCPD) and growth and differentiation factor-5 (GDF-5) on the stability of titanium implants in vivo. Biomaterials 27:3988–3994. doi:10.1016/j.biomaterials.2006.02.041

    Article  PubMed  CAS  Google Scholar 

  12. Smeltzer MS, Thomas JR, Hickmon SG, Skinner RA, Nelson CL, Griffith D, Parr TR Jr, Evans RP (1997) Characterization of a rabbit model of staphylococcal osteomyelitis. J Orthop Res Off Publ Orthop Res Soc 15:414–421. doi:10.1002/jor.1100150314

    Article  CAS  Google Scholar 

  13. Rieg S, Peyerl-Hoffmann G, de With K, Theilacker C, Wagner D, Hubner J, Dettenkofer M, Kaasch A, Seifert H, Schneider C, Kern WV (2009) Mortality of S. aureus bacteremia and infectious diseases specialist consultation—a study of 521 patients in Germany. J Infect 59:232–239. doi:10.1016/j.jinf.2009.07.015

    Article  PubMed  Google Scholar 

  14. Kock R, Mellmann A, Schaumburg F, Friedrich AW, Kipp F, Becker K (2011) The epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) in Germany. Deutsches Arzteblatt Int 108:761–767. doi:10.3238/arztebl.2011.0761

    Google Scholar 

  15. Lax E (2004) The mold in Dr. Florey’s coat: the story of the penicillin miracle. Holt Paperbacks, NY

  16. Schwartz BS, Ngo PD, Guglielmo BJ (2008) Daptomycin treatment failure for vancomycin-resistant Enterococcus faecium infective endocarditis: impact of protein binding? Ann Pharmacother 42:289–290. doi:10.1345/aph.1K548

    Article  PubMed  Google Scholar 

  17. van Hal SJ, Paterson DL, Gosbell IB (2011) Emergence of daptomycin resistance following vancomycin-unresponsive Staphylococcus aureus bacteraemia in a daptomycin-naive patient–a review of the literature. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 30:603–610. doi:10.1007/s10096-010-1128-3

    Article  Google Scholar 

  18. Giannoudis PV, Townsend R, Homer-Vanniasinkam S, Wilcox MH (2011) Soft tissue and bone MRSA infections. Injury 42(Suppl 5):S1–S2. doi:10.1016/S0020-1383(11)70124-3

    Google Scholar 

  19. Parvizi J, Pawasarat IM, Azzam KA, Joshi A, Hansen EN, Bozic KJ (2010) Periprosthetic joint infection: the economic impact of methicillin-resistant infections. J Arthroplast 25:103–107. doi:10.1016/j.arth.2010.04.011

    Article  Google Scholar 

  20. Marschall J, Lane MA, Beekmann SE, Polgreen PM, Babcock HM (2013) Current management of prosthetic joint infections in adults: results of an emerging infections network survey. Int J Antimicrob Agents 41:272–277. doi:10.1016/j.ijantimicag.2012.10.023

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Mills LA, Simpson AH (2012) In vivo models of bone repair. J Bone Joint Surg Br Vol 94:865–874. doi:10.1302/0301-620X.94B7.27370

    Article  CAS  Google Scholar 

  22. Poultsides LA, Papatheodorou LK, Karachalios TS, Khaldi L, Maniatis A, Petinaki E, Malizos KN (2008) Novel model for studying hematogenous infection in an experimental setting of implant-related infection by a community-acquired methicillin-resistant S. aureus strain. J Orthop Res Off Publ Orthop Res Soc 26:1355–1362. doi:10.1002/jor.20608

    Article  Google Scholar 

  23. Gaudin A, Amador Del Valle G, Hamel A, Le Mabecque V, Miegeville AF, Potel G, Caillon J, Jacqueline C (2011) A new experimental model of acute osteomyelitis due to methicillin-resistant Staphylococcus aureus in rabbit. Lett Appl Microbiol 52:253–257. doi:10.1111/j.1472-765X.2010.02992.x

    Article  PubMed  CAS  Google Scholar 

  24. Oguz E, Ekinci S, Eroglu M, Bilgic S, Koca K, Durusu M, Kaldirim U, Sadir S, Yurttas Y, Cakmak G, Kilic A, Purtuloglu T, Ozyurek S, Cekli Y, Ozkan H, Sehirlioglu A (2011) Evaluation and comparison of the effects of hyperbaric oxygen and ozonized oxygen as adjuvant treatments in an experimental osteomyelitis model. J Surg Res 171:e61–e68. doi:10.1016/j.jss.2011.06.029

    Article  PubMed  CAS  Google Scholar 

  25. Saleh Mghir A, Cremieux AC, Bleton R, Ismael F, Manteau M, Dautrey S, Massias L, Garry L, Sales N, Maziere B, Carbon C (1998) Efficacy of teicoplanin and autoradiographic diffusion pattern of [14C]teicoplanin in experimental Staphylococcus aureus infection of joint prostheses. Antimicrob Agents Chemother 42:2830–2835

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Craig MR, Poelstra KA, Sherrell JC, Kwon MS, Belzile EL, Brown TE (2005) A novel total knee arthroplasty infection model in rabbits. J Orthop Res Off Publ Orthop Res Soc 23:1100–1104. doi:10.1016/j.orthres.2005.03.007

    Article  Google Scholar 

  27. Garrigos C, Murillo O, Euba G, Verdaguer R, Tubau F, Cabellos C, Cabo J, Ariza J (2010) Efficacy of usual and high doses of daptomycin in combination with rifampin versus alternative therapies in experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54:5251–5256. doi:10.1128/AAC.00226-10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Niska JA, Shahbazian JH, Ramos RI, Pribaz JR, Billi F, Francis KP, Miller LS (2012) Daptomycin and tigecycline have broader effective dose ranges than vancomycin as prophylaxis against a Staphylococcus aureus surgical implant infection in mice. Antimicrob Agents Chemother 56:2590–2597. doi:10.1128/AAC.06291-11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Lucke M, Schmidmaier G, Sadoni S, Wildemann B, Schiller R, Stemberger A, Haas NP, Raschke M (2003) A new model of implant-related osteomyelitis in rats. J Biomed Mater Res Part B Appl Biomater 67:593–602. doi:10.1002/jbm.b.10051

    Article  PubMed  CAS  Google Scholar 

  30. Petty W, Spanier S, Shuster JJ (1988) Prevention of infection after total joint replacement. Experiments with a canine model. J Bone Joint Surg Am Vol 70:536–539

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold J. Suda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helbig, L., Simank, H.G., Lorenz, H. et al. Establishment of a new methicillin resistant staphylococcus aureus animal model of osteomyelitis. International Orthopaedics (SICOT) 38, 891–897 (2014). https://doi.org/10.1007/s00264-013-2149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-2149-1

Keywords

Navigation