Computer aided surgery in foot and ankle: applications and perspectives

Abstract

Purpose

At the beginning of the twenty-first century, the computer has supplemented the possibilities of orthopaedic surgery. This article analyses the feasibility and potential clinical benefit of intraoperative three-dimensional imaging (3D), computer assisted surgery (CAS) and intraoperative pedography (IP) in foot and ankle surgery.

Methods

The feasibility, accuracy and clinical benefit of 3D, CAS and IP were analysed in ongoing experimental and prospective studies at the institution in which the inventor of IP and principal user of 3D and CAS in foot and ankle surgery operates.

Results

Three dimensional imaging: In approximately one third of the cases, reduction/correction and/or implant position was corrected after intraoperative 3D scan during the same procedure in different prospective, consecutive, non-controlled studies (Level III). CAS: CAS guidance for the correction of deformities of the ankle, hindfoot and midfoot/tarsometatarsal (TMT) joint provided higher accuracy, a faster correction process and better scores at a minimum follow-up of two years in comparison without CAS guidance in a single-centre matched-pair follow-up study (Level II). IP: Additional use of IP as the only difference between two groups with correction and/or arthrodesis at foot and/or ankle led to improved clinical outcome scores at a mean of two years follow-up in a prospective randomised controlled study (Level I).

Conclusions

Three dimensional imaging provides important information which could not be obtained from two-dimensional C-arm alone. The benefit of CAS is high when improved accuracy may lead to an improved clinical outcome. Intraoperative pedography is useful when intraoperative biomechanical assessment may lead to an immediate improvement of the achieved surgical result.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Richter M (2006) Computer based systems in foot and ankle surgery at the beginning of the 21st century. Fuss Sprungg 4:59–71

    Article  Google Scholar 

  2. 2.

    Richter M (2012) Computergestützte Fußchirurgie. Springer, Berlin

    Google Scholar 

  3. 3.

    Richter M, Zech S (2009) Intraoperative 3-dimensional imaging in foot and ankle trauma—experience with a second-generation device (ARCADIS-3D). J Orthop Trauma 23:213–220

    PubMed  Article  Google Scholar 

  4. 4.

    Richter M, Geerling J, Zech S, Goesling T, Krettek C (2005) Intraoperative three-dimensional imaging with a motorized mobile C-arm (SIREMOBIL ISO-C-3D) in foot and ankle trauma care: a preliminary report. J Orthop Trauma 19:259–266

    PubMed  Article  Google Scholar 

  5. 5.

    Euler E, Wirth S, Linsenmaier U, Mutschler W, Pfeifer KJ, Hebecker A (2001) Vergleichende Untersuchung zur Qualität der C-Bogen-basierten 3D-Bildgebung am Talus. Unfallchirurg 104:839–846

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Geerling J, Kendoff D, Citak M, Zech S, Gardner MJ, Hüfner T, Krettek C, Richter M (2009) Intraoperative 3D imaging in calcaneal fracture care-clinical implications and decision making. J Trauma 66:768–773

    PubMed  Article  Google Scholar 

  7. 7.

    Kendoff D, Citak M, Gardner M, Kfuri M Jr, Thumes B, Krettek C, Hüfner T (2007) Three-dimensional fluoroscopy for evaluation of articular reduction and screw placement in calcaneal fractures. Foot Ankle Int 28:1165–1171

    PubMed  Article  Google Scholar 

  8. 8.

    Myerson MS, Fisher RT, Burgess AR, Kenzora JE (1986) Fracture dislocations of the tarsometatarsal joints: end results correlated with pathology and treatment. Foot Ankle 6:225–242

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Hansen STJ (2000) Functional reconstruction of the foot and ankle. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  10. 10.

    Richter M, Zech S (2008) 3D imaging (ARCADIS)-based computer assisted surgery (CAS) guided retrograde drilling in osteochondritis dissecans of the talus. Foot Ankle Int 29:1243–1248

    PubMed  Article  Google Scholar 

  11. 11.

    Richter M, Zech S (2011) Navigierte retrograde Anbohrung OCD Talus. Oper Orthop Traumatol 23:473–482

  12. 12.

    Berndt AL, Harty M (1959) Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am 41-A:988–1020

    PubMed  CAS  Google Scholar 

  13. 13.

    Alexander AH, Lichtman DM (1980) Surgical treatment of transchondral talar-dome fractures (osteochondritis dissecans). Long-term follow-up. J Bone Joint Surg Am 62:646–652

    PubMed  CAS  Google Scholar 

  14. 14.

    Tol JL, Struijs PA, Bossuyt PM, Verhagen RA, van Dijk CN (2000) Treatment strategies in osteochondral defects of the talar dome: a systematic review. Foot Ankle Int 21:119–126

    PubMed  CAS  Google Scholar 

  15. 15.

    Taranow WS, Bisignani GA, Towers JD, Conti SF (1999) Retrograde drilling of osteochondral lesions of the medial talar dome. Foot Ankle Int 20:474–480

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Fink C, Rosenberger RE, Bale RJ, Rieger M, Hackl W, Benedetto KP, Künzel KH, Hoser C (2001) Computer-assisted retrograde drilling of osteochondral lesions of the talus. Orthopade 30:59–65

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Richter M (2003) Experimental comparison between computer assisted surgery (CAS) based and C-arm based correction of hind- and midfoot deformities. Osteo Trauma Care 11:29–34

    Article  Google Scholar 

  18. 18.

    Rosenberger RE, Bale RJ, Fink C, Rieger M, Reichkendler M, Hackl W, Benedetto KP, Künzel KH, Hoser C (2002) Computer-assisted drilling of the lower extremity. Technique and indications. Unfallchirurg 105:353–358

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Richter M, Geerling J, Zech S, Krettek C (2005) ISO-C-3D based computer assisted surgery (CAS) guided retrograde drilling in a osteochondrosis dissecans of the talus: a case report. Foot 15:107–113

    Article  Google Scholar 

  20. 20.

    Richter M, Zech S, Geerling J, Frink M, Knobloch K, Krettek C (2006) A new foot and ankle outcome score: questionnaire based, subjective, visual-analogue-scale, validated and computerized. Foot Ankle Surg 12:191–199

    Article  Google Scholar 

  21. 21.

    Zwipp H (1994) Chirurgie des Fusses. Springer, Vienna

    Book  Google Scholar 

  22. 22.

    Richter M, Wippermann B, Krettek C, Schratt E, Hufner T, Thermann H (2001) Fractures and fracture dislocations of the midfoot: occurrence, causes and long-term results. Foot Ankle Int 22:392–398

    PubMed  CAS  Google Scholar 

  23. 23.

    Marti RK, de Heus JA, Roolker W, Poolman RW, Besselaar PP (1999) Subtalar arthrodesis with correction of deformity after fractures of the os calcis. J Bone Joint Surg Br 81:611–616

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Rammelt S, Grass R, Zawadski T, Biewener A, Zwipp H (2004) Foot function after subtalar distraction bone-block arthrodesis. A prospective study. J Bone Joint Surg Br 86:659–668

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Madezo P, de Cussac JB, Gouin F, Bainvel JV, Passuti N (1998) Combined tibio-talar and subtalar arthrodesis by retrograde nail in hindfoot rheumatoid arthritis. Rev Chir Orthop Reparatrice Appar Mot 84:646–652

    PubMed  CAS  Google Scholar 

  26. 26.

    Trnka HJ, Easley ME, Lam PW, Anderson CD, Schon LC, Myerson MS (2001) Subtalar distraction bone block arthrodesis. J Bone Joint Surg Br 83:849–854

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Stephens HM, Sanders R (1996) Calcaneal malunions: results of a prognostic computed tomography classification system. Foot Ankle Int 17:395–401

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Richter M, Zech S (2008) Computer assisted surgery (CAS) guided arthrodesis of the foot and ankle: an analysis of accuracy in 100 cases. Foot Ankle Int 29:1235–1242

    PubMed  Article  Google Scholar 

  29. 29.

    Richter M (2010) Navigierte Korrekturarthrodese des Lisfrancgelenks und Mittelfusses. Oper Orthop Traumatol

  30. 30.

    Richter M (2009) Navigierte Korrekturarthrodese des oberen Sprunggelenks. Oper Orthop Traumatol 21:313–322

    PubMed  Article  Google Scholar 

  31. 31.

    Richter M (2010) Navigierte Korrekturarthrodese des oberen und unteren Sprunggelenks mit retrograder Marknagelfixierung. Oper Orthop Traumatol 23:141–150

    Article  Google Scholar 

  32. 32.

    Richter M (2010) Navigierte Korrekturarthrodese des unteren Sprunggelenks. Oper Orthop Traumatol 22:402–413

    PubMed  Article  Google Scholar 

  33. 33.

    Dahlen C, Zwipp H (2001) Computer-assistierte OP-Planung 3D-Software für den PC. Unfallchirurg 104:466–479

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Chauhan SK, Clark GW, Lloyd S, Scott RG, Breidahl W, Sikorski JM (2004) Computer-assisted total knee replacement. A controlled cadaver study using a multi-parameter quantitative CT assessment of alignment (the Perth CT Protocol). J Bone Joint Surg Br 86:818–823

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Haaker RG, Stockheim M, Kamp M, Proff G, Breitenfelder J, Ottersbach A (2005) Computer-assisted navigation increases precision of component placement in total knee arthroplasty. Clin Orthop Relat Res 433:152–159

    Google Scholar 

  36. 36.

    Langdown AJ, Auld J, Bruce WJ (2005) Computer-assisted knee arthroplasty versus a conventional jig-based technique. J Bone Joint Surg Br 87:588–589

    PubMed  CAS  Google Scholar 

  37. 37.

    Richter M, Mattes T, Cakir B (2004) Computer-assisted posterior instrumentation of the cervical and cervico-thoracic spine. Eur Spine J 13:50–59

    PubMed  Article  Google Scholar 

  38. 38.

    Richter M, Amiot LP, Neller S, Kluger P, Puhl W (2000) Computer-assisted surgery in posterior instrumentation of the cervical spine: an in-vitro feasibility study. Eur Spine J 9(Suppl 1):S65–S70

    PubMed  Article  Google Scholar 

  39. 39.

    Richter M, Geerling J, Frink M, Zech S, Knobloch K, Dammann F, Hankemeier S, Krettek C (2006) Computer assisted surgery (CAS) based correction of posttraumatic ankle and hindfoot deformities—preliminary results. Foot Ankle Surg 12:113–119

    Article  Google Scholar 

  40. 40.

    Kitaoka HB, Alexander IJ, Adelaar RS, Nunley JA, Myerson MS, Sanders M (1994) Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int 15:349–353

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Schmiegel A, Vieth V, Gaubitz M, Rosenbaum D (2008) Pedography and radiographic imaging for the detection of foot deformities in rheumatoid arthritis. Clin Biomech (Bristol, Avon) 23:648–652

    Article  CAS  Google Scholar 

  42. 42.

    Richter M, Frink M, Zech S, Vanin N, Geerling J, Droste P, Krettek C (2006) Intraoperative pedography: a validated method for static intraoperative biomechanical assessment. Foot Ankle Int 27:833–842

    PubMed  Google Scholar 

  43. 43.

    Richter M, Zech S (2009) Is intraoperative pedography helpful in clinical use–preliminary results of 100 cases from a consecutive, prospective, randomized, controlled clinical study. Foot Ankle Surg 15:198–204

    PubMed  Article  Google Scholar 

  44. 44.

    Richter M, Zech S (2009) Leonard J. Goldner Award 2009. Intraoperative pedobarography leads to improved outcome scores: a Level I study. Foot Ankle Int 30:1029–1036

    PubMed  Article  Google Scholar 

  45. 45.

    Bechtold JE, Powless SH (1993) The application of computer graphics in foot and ankle surgical planning and reconstruction. Clin Podiatr Med Surg 10:551–562

    PubMed  CAS  Google Scholar 

  46. 46.

    Adelaar RS, Kyles MK (1981) Surgical correction of resistant talipes equinovarus: observations and analysis - preliminary report. Foot Ankle 2:126–137

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Coetzee JC, Hansen ST (2001) Surgical management of severe deformity resulting from posterior tibial tendon dysfunction. Foot Ankle Int 22:944–949

    PubMed  CAS  Google Scholar 

  48. 48.

    Mosier-LaClair S, Pomeroy G, Manoli A (2001) Operative treatment of the difficult stage 2 adult acquired flatfoot deformity. Foot Ankle Clin 6:95–119

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Sammarco GJ, Conti SF (1998) Surgical treatment of neuroarthropathic foot deformity. Foot Ankle Int 19:102–109

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Stephens HM, Walling AK, Solmen JD, Tankson CJ (1999) Subtalar repositional arthrodesis for adult acquired flatfoot. Clin Orthop 365:69–73

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martinus Richter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Richter, M. Computer aided surgery in foot and ankle: applications and perspectives. International Orthopaedics (SICOT) 37, 1737–1745 (2013). https://doi.org/10.1007/s00264-013-1922-5

Download citation

Keywords

  • Potential Clinical Benefit
  • Closed Procedure
  • Improve Clinical Outcome
  • Osteochondrosis
  • Clinical Outcome Score