Skip to main content

Advertisement

Log in

Healing of osteotomy sites applying either piezosurgery or two conventional saw blades: a pilot study in rabbits

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to compare bone healing of experimental osteotomies applying either piezosurgery or two different oscillating saw blades in a rabbit model.

Methods

The 16 rabbits were randomly assigned into four groups to comply with observation periods of one, two, three and five weeks. In all animals, four osteotomy lines were performed on the left and right nasal bone using a conventional saw blade, a novel saw blade and piezosurgery.

Results

All three osteotomy techniques revealed an advanced gap healing starting after one week. The most pronounced new bone formation took place between two and three weeks, whereby piezoelectric surgery revealed a tendency to faster bone formation and remodelling. Yet, there were no significant differences between the three modalities.

Conclusions

The use of a novel as well as the piezoelectric bone-cutting instrument revealed advanced bone healing with a favourable surgical performance compared to a traditional saw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stern A, Green J (2012) Sinus lift procedures: an overview of current techniques. Dent Clin North Am 56:219–233

    Article  PubMed  Google Scholar 

  2. Bindra RR, Burke FD (2009) Metacarpal osteotomy for correction of acquired phalangeal rotational deformity. J Hand Surg Am 34:1895–1899

    Article  PubMed  Google Scholar 

  3. Avsar Y (2012) The oscillating micro-saw: a safe and pliable instrument for transverse osteotomy in rhinoplasty. Aesthet Surg J 32:700–708

    Article  PubMed  Google Scholar 

  4. Schwieger K, Carrero V, Rentzsch R, Becker A, Bishop N, Hille E, Louis H, Morlock M, Honl M (2004) Abrasive water jet cutting as a new procedure for cutting cancellous bone—in vitro testing in comparison with the oscillating saw. J Biomed Mater Res B Appl Biomater 71:223–228

    Article  PubMed  Google Scholar 

  5. Vercellotti T (1991) Technological characteristics and clinical indications of piezoelectric bone surgery. Minerva Stomatol 53:207–214

    Google Scholar 

  6. Giraud JY, Villemin S, Darmana R, Cahuzac JP, Autefage A, Morucci JP (1991) Bone cutting. Clin Phys Physiol Meas 12:1–19

    Article  PubMed  CAS  Google Scholar 

  7. Labanca M, Azzola F, Vinci R, Rodella LF (2008) Piezoelectric surgery: twenty years of use. Br J Oral Maxillofac Surg 46:265–269

    Article  PubMed  Google Scholar 

  8. Itro A, Lupo G, Carotenuto A, Filipi M, Cocozza E, Marra A (2012) Benefits of piezoelectric surgery in oral and maxillofacial surgery. Review of literature. Minerva Stomatol 61:213–224

    PubMed  CAS  Google Scholar 

  9. Eggers G, Klein J, Blank J, Hassfeld S (2004) Piezosurgery: an ultrasound device for cutting bone and its use and limitations in maxillofacial surgery. Br J Oral Maxillofac Surg 42:451–453

    Article  PubMed  Google Scholar 

  10. Farrell M, Mathieson A, Chung P, Heller J, Clarke SP, McDonald MK, Cardoni A (2011) In vitro performance testing of two arcuate oscillating saw blades designed for use during tibial plateau leveling osteotomy. Vet Surg 40:694–707

    Article  PubMed  Google Scholar 

  11. Schroeder HE, Münzel-Pedrazzoli S (1973) Correlated morphometric and biochemical analysis of gingival tissue. Morphometric model, tissue sampling and test of stereologic procedures. J Microsc 99:301–329

    Article  PubMed  CAS  Google Scholar 

  12. Cardaropoli G, Araújo M, Lindhe J (2003) Dynamics of bone tissue formation in tooth extraction sites. An experimental study in dogs. J Clin Periodontol 30:809–818

    Article  PubMed  CAS  Google Scholar 

  13. Auer JA, Goodship A, Arnoczky S, Pearce S, Price J, Claes L, von Rechenberg B, Hofmann-Amtenbrinck M, Schneider E, Müller-Terpitz R, Thiele F, Rippe KP, Grainger DW (2007) Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use. BMC Musculoskelet Disord 8:72

    Article  PubMed  Google Scholar 

  14. Mills LA, Simpson AH (2012) In vivo models of bone repair. J Bone Joint Surg Br 94:865–874

    Article  PubMed  CAS  Google Scholar 

  15. Pape D, Madry H (2012) The preclinical sheep model of high tibial osteotomy relating basic science to the clinics: standards, techniques and pitfalls. Knee Surg Sports Traumatol Arthrosc 21:228–236. doi:10.1007/s00167-012-2135-y

    Google Scholar 

  16. Cai G, Yang L, Saleh M, Coulton L (2007) The effect of tibial diaphyseal lengthening on the longitudinal growth of the tibia. J Pediatr Orthop B 16:403–407

    Article  PubMed  Google Scholar 

  17. Kuttenberger JJ, Waibel A, Stübinger S, Werner M, Klasing M, Ivanenko M, Hering P, von Rechenberg B, Sader R, Zeilhofer HF (2010) Bone healing of the sheep tibia shaft after carbon dioxide laser osteotomy: histological results. Lasers Med Sci 25:239–249

    Article  PubMed  Google Scholar 

  18. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 13:1–10

    PubMed  CAS  Google Scholar 

  19. Sohn DS, Moon JW, Lee WH, Kim SS, Kim CW, Kim KT, Moon YS (2011) Comparison of new bone formation in the maxillary sinus with and without bone grafts: immunochemical rabbit study. Int J Oral Maxillofac Implants 26:1033–1042

    PubMed  Google Scholar 

  20. Wong RW, Rabie AB (1999) A quantitative assessment of the healing of intramembranous and endochondral autogenous bone grafts. Eur J Orthod 21:119–126

    Article  PubMed  CAS  Google Scholar 

  21. Heinemann F, Hasan I, Kunert-Keil C, Götz W, Gedrange T, Spassov A, Schweppe J, Gredes T (2012) Experimental and histological investigations of the bone using two different oscillating osteotomy techniques compared with conventional rotary osteotomy. Ann Anat 194:165–170

    Article  PubMed  Google Scholar 

  22. Edwards SP (2010) Computer-assisted craniomaxillofacial surgery. Oral Maxillofac Surg Clin North Am 22:117–134

    Article  PubMed  Google Scholar 

  23. Fu CK, Wai J, Lee E, Hutchison C, Myden C, Batuyong E, Anglin C (2012) Computer-assisted patellar resection system: development and insights. J Orthop 30:535–540

    Google Scholar 

  24. Stübinger S, Nuss K, Pongratz M, Price J, Sader R, Zeilhofer HF, von Rechenberg B (2010) Comparison of Er:YAG laser and piezoelectric osteotomy: an animal study in sheep. Lasers Surg Med 42:743–751

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklaus P. Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Stübinger, S., Liu, X.L. et al. Healing of osteotomy sites applying either piezosurgery or two conventional saw blades: a pilot study in rabbits. International Orthopaedics (SICOT) 37, 1597–1603 (2013). https://doi.org/10.1007/s00264-013-1908-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-1908-3

Keywords

Navigation