Skip to main content
Log in

The locking attachment plate for proximal fixation of periprosthetic femur fractures—a biomechanical comparison of two techniques

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Mechanical properties of a locking attachment plate construct (LAP-LCP), allowing bicortical screw placement laterally to the prosthesis stem, are compared to a cerclage-LCP construct.

Methods

Eight right synthetic femora with implanted uncemented hip endoprosthesis were cut distally and fixed with LCP, monocortical locking screws and either LAP (n = 4) or cerclage (n = 4). Cyclic testing was performed with monotonically increasing sinusoidal load until failure. Relative movements at the plate–femur interface were registered by motion tracking. Statistical differences were detected by unpaired t-test and general linear model repeated measures.

Results

Stiffness of the LAP-LCP was significantly higher at the beginning (875.4 N/mm ± 29.8) and after 5000 cycles (1213.0 N/mm ± 101.1) compared to the cerclage-LCP (644.96 N/mm ± 50.1 and 851.9 N/mm ± 81.9), with p = 0.013. Relative movements for AP-bending (B) and axial translation (T) of the LAP-LCP at the beginning (0.07° ± 0.02, 0.20 mm ± 0.08), after 500 cycles (0.16° ± 0.10, 0.26 mm ± 0.07) and after 5000 cycles (0.26° ± 0.11, 0.31 mm ± 0.07) differed significantly from the cerclage-LCP (beg.: 0.26° ± 0.04, 0.28 mm ± 0.05; 500 cyc: 0.47° ± 0.03, 0.53 mm ± 0.07; 5000 cyc.: 0.63° ± 0.18, 0.79 mm ± 0.13), with B: p = 0.02, T: p = 0.04. Relative movements for medial bending were not significantly different between the two constructs. Cycles to failure (criterion 1 mm axial translation) differed significantly between LAP-LCP (19,519 ± 1,758) and cerclage-LCP (11,265 ± 2,472), with p = 0.035.

Conclusions

Biomechanically, the LAP-LCP construct improves proximal fixation of periprosthetic fractures compared to the cerclage-LCP construct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duncan CP, Masri BA (1995) Fractures of the femur after hip replacement. Instr Course Lect 44:293–304

    PubMed  CAS  Google Scholar 

  2. Lindahl H, Garellick G, Regner H, Herberts P, Malchau H (2006) Three hundred and twenty-one periprosthetic femoral fractures. J Bone Joint Surg Am 88:1215–1222

    Article  PubMed  Google Scholar 

  3. Pike J, Davidson D, Garbuz D, Duncan CP, O’Brien PJ, Masri BA (2009) Principles of treatment for periprosthetic femoral shaft fractures around well-fixed total hip arthroplasty. J Am Acad Orthop Surg 17:677–688

    PubMed  Google Scholar 

  4. Ricci WM, Bolhofner BR, Loftus T, Cox C, Mitchell S, Borrelli J Jr (2005) Indirect reduction and plate fixation, without grafting, for periprosthetic femoral shaft fractures about a stable intramedullary implant. J Bone Joint Surg Am 87:2240–2245

    Article  PubMed  Google Scholar 

  5. Virolainen P, Mokka J, Seppanen M, Makela K (2010) Up to 10 years follow up of the use of 71 cortical allografts (strut-grafts) for the treatment of periprosthetic fractures. Scand J Surg 99:240–243

    PubMed  CAS  Google Scholar 

  6. Kamineni S, Ware HE (1999) The Mennen plate: unsuitable for elderly femoral peri-prosthetic fractures. Injury 30:257–260

    Article  PubMed  CAS  Google Scholar 

  7. Dennis MG, Simon JA, Kummer FJ, Koval KJ, DiCesare PE (2000) Fixation of periprosthetic femoral shaft fractures occurring at the tip of the stem: a biomechanical study of 5 techniques. J Arthroplast 15:523–528

    Article  CAS  Google Scholar 

  8. Fulkerson E, Koval K, Preston CF, Iesaka K, Kummer FJ, Egol KA (2006) Fixation of periprosthetic femoral shaft fractures associated with cemented femoral stems: a biomechanical comparison of locked plating and conventional cable plates. J Orthop Trauma 20:89–93

    Article  PubMed  Google Scholar 

  9. Lever JP, Zdero R, Nousiainen MT, Waddell JP, Schemitsch EH (2010) The biomechanical analysis of three plating fixation systems for periprosthetic femoral fracture near the tip of a total hip arthroplasty. J Orthop Surg Res 5:45

    Article  PubMed  Google Scholar 

  10. Schmotzer H, Tchejeyan GH, Dall DM (1996) Surgical management of intra- and postoperative fractures of the femur about the tip of the stem in total hip arthroplasty. J Arthroplast 11:709–717

    Article  CAS  Google Scholar 

  11. Zdero R, Walker R, Waddell JP, Schemitsch EH (2008) Biomechanical evaluation of periprosthetic femoral fracture fixation. J Bone Joint Surg Am 90:1068–1077

    Article  PubMed  Google Scholar 

  12. Konstantinidis L, Hauschild O, Beckmann NA, Hirschmuller A, Sudkamp NP, Helwig P (2010) Treatment of periprosthetic femoral fractures with two different minimal invasive angle-stable plates: biomechanical comparison studies on cadaveric bones. Injury 41:1256–1261

    Article  PubMed  CAS  Google Scholar 

  13. Duda GN, Schneider E, Chao EY (1997) Internal forces and moments in the femur during walking. J Biomech 30:933–941

    Article  PubMed  CAS  Google Scholar 

  14. Windolf M, Muths R, Braunstein V, Gueorguiev B, Hanni M, Schwieger K (2009) Quantification of cancellous bone-compaction due to DHS Blade insertion and influence upon cut-out resistance. Clin Biomech (Bristol, Avon) 24:53–58

    Article  Google Scholar 

  15. Gueorguiev B, Wähnert D, Albrecht D, Ockert B, Windolf M, Schwieger K (2010) Effect on dynamic mechanical stability and interfragmentary movement of angle-stable locking of intramedullary nails in unstable distal tibia fractures: a biomechanical study. J Trauma 70:358–365

    Article  Google Scholar 

  16. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  17. Dennis MG, Simon JA, Kummer FJ, Koval KJ, Di Cesare PE (2001) Fixation of periprosthetic femoral shaft fractures: a biomechanical comparison of two techniques. J Orthop Trauma 15:177–180

    Article  PubMed  CAS  Google Scholar 

  18. Kligman M, Rotem A, Roffman M (2003) Cancellous and cortical morselized allograft in revision total hip replacement: a biomechanical study of implant stability. J Biomech 36:797–802

    Article  PubMed  Google Scholar 

  19. McConnell A, Zdero R, Syed K, Peskun C, Schemitsch E (2008) The biomechanics of ipsilateral intertrochanteric and femoral shaft fractures: a comparison of 5 fracture fixation techniques. J Orthop Trauma 22:517–524

    Article  PubMed  Google Scholar 

  20. Talbot M, Zdero R, Schemitsch EH (2008) Cyclic loading of periprosthetic fracture fixation constructs. J Trauma 64:1308–1312

    Article  PubMed  Google Scholar 

  21. Kobbe P, Klemm R, Reilmann H, Hockertz TJ (2008) Less invasive stabilisation system (LISS) for the treatment of periprosthetic femoral fractures: a 3-year follow-up. Injury 39:472–479

    Article  PubMed  Google Scholar 

  22. Kääb MJ, Stöckle U, Schütz M, Stefansky J, Perka C, Haas NP (2006) Stabilisation of periprosthetic fractures with angular stable internal fixation: a report of 13 cases. Arch Orthop Trauma Surg 126:105–110

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors are not compensated and there are no other institutional subsidies, corporate affiliations, or funding sources supporting this work unless clearly documented and disclosed. Implants were kindly donated by Synthes GmbH, Solothurn, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Lenz.

Additional information

This work was performed at the AO Research Institute Davos, Switzerland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenz, M., Windolf, M., Mückley, T. et al. The locking attachment plate for proximal fixation of periprosthetic femur fractures—a biomechanical comparison of two techniques. International Orthopaedics (SICOT) 36, 1915–1921 (2012). https://doi.org/10.1007/s00264-012-1574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-012-1574-x

Keywords

Navigation