Skip to main content

Effect of pentoxifylline on histopathological changes in steroid-induced osteonecrosis of femoral head: experimental study in chicken

Abstract

Purpose

Pentoxifylline (PTX) is a derivative of methylxanthine and is used in peripheral vascular and cerebrovascular diseases for its effect on the regulation of blood circulation. We investigated whether PTX could be beneficial for femoral head osteonecrosis associated with steroid through these effects.

Methods

Sixty mature Leghorn type chickens were chosen and divided into three groups. The 25 chickens in group A were given a weekly dose of 3 mg/kg/week methylprednisolone acetate intramuscularly. Four chickens in group B died after the first drug injection and were excluded from the study. Therefore, the remaining 21 chickens in group B were additionally given 25 mg/kg/day pentoxifylline intramuscularly, along with the steroid medication as given in group A. The ten chickens in group C were not given any injections, as they were accepted as the control group. After the sacrifice of the animals at week 14, both femoral heads were taken from each animal. The animals which died along the course of the study also underwent pathological examination but were not a part of the statistical analysis.

Results

In this study, steroid induced femoral head osteonecrosis has been experimentally observed in chickens after high doses of corticosteroid therapy. The chickens were given pentoxifylline in order to prevent the effects of steroid on bones and bone marrow. The results showed that chickens are suitable osteonecrosis models, and that steroid causes adipogenesis and necrosis in the bone marrow and the death of the subchondral bone.

Conclusions

The results of this study hint at the assumption that PTX may have a positive benefit on ONFH. PTX seems to minimise the effects of the steroid and reduce the incidence of ONFH.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Lieberman JR, Roth KM, Elsissy P et al (2008) Symptomatic osteonecrosis of the hip and knee after cardiac transplantation. J Arthroplasty 23(1):90–96

    PubMed  Article  Google Scholar 

  2. Shibatani M, Fujioka M, Arai Y et al (2008) Degree of corticosteroid treatment within the first 2 months of renal transplantation has a strong influence on the incidence of osteonecrosis of the femoral head. Acta Orthop 79(5):631–636

    PubMed  Article  Google Scholar 

  3. Nagasawa K, Tada Y, Koarada S et al (2005) Very early development of steroid-associated osteonecrosis of femoral head in systemic lupus erythematosus: prospective study by MRI. Lupus 14(5):385–390

    PubMed  Article  CAS  Google Scholar 

  4. Weinstein RS (2011) Glucocorticoid-induced osteonecrosis. Endocrine Dec 15. [Epub ahead of print]

  5. Kerachian MA, Séguin C, Harvey EJ (2009) Glucocorticoids in osteonecrosis of the femoral head: a new understanding of the mechanisms of action. J Steroid Biochem Mol Biol 114(3–5):121–128

    PubMed  Article  CAS  Google Scholar 

  6. Fisher DE (1978) The role of fat embolism in the etiology of corticosteroid-induced avascular necrosis: clinical and experimental results. Clin Orthop Relat Res 130:68–80

    PubMed  Google Scholar 

  7. Jones LC, Hungerford DS (1984) Models of ischemic necrosis of bone. In: Arlet J, Ficat RP, Hungerford DS (eds) Bone circulation. Williams and Wilkins, Baltimore, pp 30–34

    Google Scholar 

  8. Kawai K, Maruno H, Hirohata K (1983) Fat necrosis of osteocytes as a causative factor in idiopathic osteonecrosis of the femoral head in man. Trans Orthop Res Soc 8:263

    Google Scholar 

  9. Wang GJ, Sweet DE, Reger SI et al (1977) Fatcell changes as a mechanism of avascular necrosis of the femoral head in cortisone-treated rabbits. J Bone Joint Surg 59A:729–735

    CAS  Google Scholar 

  10. Wang GJ (1992) Pathogenesis of steroid-induced avascular necrosis and its response to lipid clearing agent. In: Hirohata K, Mizuno K, Matsubara T (eds) Trends in research and treatment of joint diseases. Springer-Verlag, Tokyo, pp 59–71

    Chapter  Google Scholar 

  11. Wang GJ, Cui Q, Balian G (2000) The Nicolas Andry award. The pathogenesis and prevention of steroid induced osteonecrosis. Clin Orthop Relat Res 370:295–310

    PubMed  Article  Google Scholar 

  12. Wang GJ, Dughman SS, Reger SI (1984) Femoral head blood flow in long- term steroid treatment (study of rabbit model). In: Arlet J, Ficat RP, Hungerford DS (eds) Bone circulation. Williams and Wilkins, Baltimore, pp 35–37

    Google Scholar 

  13. Pengde K, Fuxing P, Bin S et al (2008) Lovastatin inhibits adipogenesis and prevents osteonecrosis in steroid-treated rabbits. Joint Bone Spine 75(6):696–701

    PubMed  Article  Google Scholar 

  14. Kabata T, Kubo T, Matsumoto T et al (2005) Onset of steroid-induced osteonecrosis in rabbits and its relationship to hyperlipaemia and increased free fatty acids. Rheumatology 44(10):1233–1237

    PubMed  Article  CAS  Google Scholar 

  15. Cui Q, Wang GJ, Su CC et al (1997) The Otto Aufranc award. Lovastatin prevents steroid induced adipogenesis and osteonecrosis. Clin Orthop Relat Res 344:8–19

    PubMed  Article  Google Scholar 

  16. Pritchett JW (2001) Statin therapy decreases the risk of osteonecrosis in patients with receiving steroids. Clin Orthop Relat Res 386:173–178

    PubMed  Article  Google Scholar 

  17. Wang GJ, Moga DB, Richemer WG et al (1978) Cortisone induced bone changes and its response to lipid clearing agents. Clin Orthop Relat Res 130:81–85

    PubMed  CAS  Google Scholar 

  18. Kang P, Gao H, Pei F et al (2010) Effects of an anticoagulant and a lipid-lowering agent on the prevention of steroid-induced osteonecrosis in rabbits. Int J Exp Pathol 91(3):235–243

    PubMed  Article  CAS  Google Scholar 

  19. Motomura G, Yamamoto T, Miyanishi K et al (2008) Risk factors for developing osteonecrosis after prophylaxis in steroid-treated rabbits. J Rheumatol 35(12):2391–2394

    PubMed  Article  Google Scholar 

  20. Nishida K, Yamamoto T, Motomura G et al (2008) Pitavastatin may reduce risk of steroid-induced osteonecrosis in rabbits: a preliminary histological study. Clin Orthop Relat Res 466(5):1054–1058

    PubMed  Article  Google Scholar 

  21. Calder JD, Buttery L, Revell PA et al (2004) Apoptosis—a significant cause of bone cell death in osteonecrosis of the femoral head. J Bone Joint Surg Br 86(8):1209–1213

    PubMed  Article  CAS  Google Scholar 

  22. Calder JD, Buttery L, Revell PA et al (2000) Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab 85(8):2907–2912

    Article  Google Scholar 

  23. Zalavras C, Shah S, Birnbaum MJ et al (2003) Role of apoptosis in glucocorticoid-induced osteoporosis and osteonecrosis. Crit Rev Eukaryot Gene Expr 13(2–4):221–235

    PubMed  CAS  Google Scholar 

  24. Ward A, Clissold SP (1987) Pentoxifylline: a review of its pharmacodynamic and pharmacokinetic properties and its therapeutic efficacy. Drugs 34:50–97

    PubMed  Article  CAS  Google Scholar 

  25. Zhang M, Xu YJ, Mengi SA et al (2004) Therapeutic potentials of pentoxifylline for treatment of cardiovascular diseases. Exp Clin Cardiol 9(2):103–111

    PubMed  CAS  Google Scholar 

  26. Schwarz EM, Benz EB, Lu AP et al (2000) Quantitative small-animal surrogate to evaluate drug efficacy in preventing wear debris-induced osteolysis. J Orthop Res 18(6):849–855

    PubMed  Article  CAS  Google Scholar 

  27. Horiuchi H, Saito N, Kinoshita T et al (2001) Enhancement of bone morphogenetic protein-2-induced new bone formation in mice by the phosphodiesterase inhibitor pentoxifylline. Bone 28(3):290–294

    PubMed  Article  CAS  Google Scholar 

  28. Rawadi G, Ferrer C, Spinella-Jaegle S et al (2001) 1-(5-oxohexyl)-3,7-dimethylxanthine, a phosphodiesterase inhibitor, activates MAPK cascades and promotes osteoblast differentiation by a mechanism independent of PKA activation (pentoxifylline promotes osteoblast differentiation). Endocrinology 142(11):4673–4682

    PubMed  Article  CAS  Google Scholar 

  29. Kinoshita T, Ebara S, Kamimura M et al (2000) Phosphodiesterase inhibitors, Pentoxifylline and Rolipam, increase bone mass by promoting bone formation in normal mice. Bone 27:811–817

    PubMed  Article  CAS  Google Scholar 

  30. Horiuchi H, Saito N, Kinoshita T et al (2004) Enhancement of recombinant human bone morphogenetic protein-2 (rhBMP-2)-induced new bone formation by concurrent treatment with parathyroid hormone and a phosphodiesterase inhibitor, pentoxifylline. J Bone Miner Metab 22(4):329–334

    PubMed  Article  CAS  Google Scholar 

  31. Pateder DB, Sheu TJ, O'Keefe RJ et al (2002) Role of pentoxifylline in preventing radiation damage to epiphyseal growth plate chondrocytes. Radiat Res 157(1):6

    Article  Google Scholar 

  32. Epstein MS, Wicknick FW, Epstein JB et al (2010) Management of bisphosphonate-associated osteonecrosis: pentoxifylline and tocopherol in addition to antimicrobial therapy. An initial case series. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110(5):593–596

    PubMed  Article  Google Scholar 

  33. Matsui M, Saito S, Ohzono K et al (1992) Experimental steroid-induced osteonecrosis in adult rabbits with hypersensitivity vasculitis. Clin Orthop Relat Res 277:61–72

    PubMed  Google Scholar 

  34. Gao YS, Zhang CQ (2010) Cytotherapy of osteonecrosis of the femoral head: a mini review. Int Orthop 34(6):779–782

    PubMed  Article  Google Scholar 

  35. Jäger M, Zilkens C, Bittersohl B et al (2011) Efficiency of iloprost treatment for osseous malperfusion. Int Orthop 35(5):761–765

    PubMed  Article  Google Scholar 

  36. Jäger M, Zilkens C, Westhoff B et al (2009) Efficiency of iloprost treatment for chemotherapy-associated osteonecrosis after childhood cancer. Anticancer Res 29(8):3433–3440

    PubMed  Google Scholar 

  37. Petje G, Radler C, Aigner N et al (2004) Pharmacological management of aseptic osteonecrosis in children. Expert Opin Pharmacother 5(7):1455–1462

    PubMed  Article  CAS  Google Scholar 

  38. Yoshioka T, Mishima H, Akaogi H et al (2011) Concentrated autologous bone marrow aspirate transplantation treatment for corticosteroid-induced osteonecrosis of the femoral head in systemic lupus erythematosus. Int Orthop 35(6):823–829

    PubMed  Article  Google Scholar 

  39. Gangji V, Hauzeur JP (2005) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. Surgical technique. J Bone Joint Surg Am 87 Suppl 1(Pt 1):106–112

    Google Scholar 

  40. Motomura G, Yamamoto T, Irisa T et al (2008) Dose effects of corticosteroids on the development of osteonecrosis in rabbits. J Rheumatol 35(12):2395–2399

    PubMed  Article  CAS  Google Scholar 

  41. Wu X, Yang S, Duan D et al (2008) Experimental osteonecrosis induced by a combination of low-dose lipopolysaccharide and high-dose methylprednisolone in rabbits. Joint Bone Spine 75(5):573–578

    PubMed  Article  CAS  Google Scholar 

  42. Kuribayashi M, Fujioka M, Takahashi KA et al (2010) Vitamin E prevents steroid-induced osteonecrosis in rabbits. Acta Orthop 81(1):154–160

    Article  Google Scholar 

  43. Li Y, Han R, Geng C et al (2009) A new osteonecrosis animal model of the femoral head induced by microwave heating and repaired with tissue engineered bone. Int Orthop 33(2):573–580

    PubMed  Article  Google Scholar 

  44. Tang TT, Lu B, Yue B et al (2007) Treatment of osteonecrosis of the femoral head with hBMP-2-gene-modified tissue-engineered bone in goats. J Bone Joint Surg Br 89(1):127–129

    PubMed  Article  CAS  Google Scholar 

  45. Sounes J, Griffin M, Malslen C et al (1996) Evidence that cyclic AMP phosphodiesterase inhibitors suppress TNF α generation from human monocytes by interaction with a low-affinity phosphodiesterase 4 conformer. Br J Pharmacol 118:649–658

    Google Scholar 

  46. Badger AM, Olivera DL, Eser KM (1994) Beneficial effects of the phosphodiesterase inhibitors BRL 61063, pentoxifylline, and rolipram in a murine model of endotoxin shock. Circ Shock 44:188–195

    PubMed  CAS  Google Scholar 

  47. Sensky PL, Prise VE, Ward AE et al (1993) The effects of pentoxifylline on the relative perfusion of tumours growing in three sites in the mouse. Br J Cancer 68(6):1110–1114

    PubMed  Article  CAS  Google Scholar 

  48. Hashimato J, Takaoka K, Yoshikawa H et al (1991) Preservation of ectopically induced bone in the mouse by estradiol. Bone 12:249–255

    Article  Google Scholar 

  49. Shimizu T, Mehdi R, Yoshimura Y et al (1991) Sequential expression of bone morphogenetic protein, tumor necrosis factor, and their receptors in bone-forming reaction after mouse femoral marrow ablation. Bone 23:127–133

    Article  Google Scholar 

  50. Zhou FH, Foster BK, Zhou XF et al (2006) TNF-alpha mediates p38 MAP kinase activation and negatively regulates bone formation at the injured growth plate in rats. J Bone Miner Res 21(7):1075–1088

    PubMed  Article  CAS  Google Scholar 

  51. Boguslawski G, Hale LV, Yu XP et al (2000) Activation of osteocalcin transcription involves interaction of protein kinase A and protein kinase C dependent pathways. J Biol Chem 275:999–1000

    PubMed  Article  CAS  Google Scholar 

Download references

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yener Erken.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erken, H.Y., Ofluoglu, O., Aktas, M. et al. Effect of pentoxifylline on histopathological changes in steroid-induced osteonecrosis of femoral head: experimental study in chicken. International Orthopaedics (SICOT) 36, 1523–1528 (2012). https://doi.org/10.1007/s00264-012-1497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-012-1497-6

Keywords

  • Femoral Head
  • Osteonecrosis
  • Pentoxifylline
  • Bone Marrow Oedema
  • Steroid Medication