Skip to main content

Advertisement

Log in

Optimal mechanical environment of the healing bone fracture/osteotomy

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

The aim of this paper is to review recent experimental and clinical publications on bone biology with respect to the optimal mechanical environment in the healing process of fractures and osteotomies. The basic postulates of bone fracture healing include static bone compression and immobilisation/fixation for three weeks and intermittent dynamic loading treatment afterwards. The optimal mechanical strain should be in the range of 100–2,000 microstrain, depending on the frequency of the strain application, type of bone and location in the bone, age and hormonal status. Higher frequency of mechanical strain application or larger number of repetition cycles result in increased bone mass at the healing fracture site, but only up to a certain limit, values beyond which no additional benefit is observed. Strain application and transition period from non-load-bearing to full load-bearing can be modified by implants allowing dynamisation of compression and generating strains at the fracture healing site in a controlled manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wood GW (2007) Fractures and dislocation, general principles of fracture treatment. In: Canale ST, Beaty JH (eds) Campbell’s operative orthopaedics, 11th edn. Mosby, Philadelphia, pp 3018–3085

    Google Scholar 

  2. Rüedi TP, Buckley RE, Moran CG (2007) AO principles of fracture management. Thieme, New York

    Google Scholar 

  3. Wolff J (2011) The classic: on the significance of the architecture of the spongy substance for the question of bone growth: a preliminary publication. 1869. Clin Orthop Relat Res 469:3077–3078. doi:10.1007/s11999-011-2041-5

    Article  PubMed  Google Scholar 

  4. Lanyon LE (1974) Experimental support for the trajectorial theory of bone structure. J Bone Joint Surg Br 56:160–166

    PubMed  CAS  Google Scholar 

  5. Lanyon LE, Baggott DG (1976) Mechanical function as an influence on the structure and form of bone. J Bone Joint Surg Br 58-B:436–443

    PubMed  CAS  Google Scholar 

  6. Woo SL, Kuei SC, Amiel D, Gomez MA, Hayes WC, White FC, Akeson WH (1981) The effect of prolonged physical training on the properties of long bone: a study of Wolff’s Law. J Bone Joint Surg Am 63:780–787

    PubMed  CAS  Google Scholar 

  7. McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg Br 60-B:150–162

    PubMed  CAS  Google Scholar 

  8. Baggott DG, Goodship AE, Lanyon LE (1981) A quantitative assessment of compression plate fixation in vivo: an experimental study using the sheep radius. J Biomech 14:701–711

    Article  PubMed  CAS  Google Scholar 

  9. Chao EY, Kasman RA, An KN (1982) Rigidity and stress analyses of external fracture fixation devices–a theoretical approach. J Biomech 15:971–983

    Article  PubMed  CAS  Google Scholar 

  10. Lewallen DG, Chao EY, Kasman RA, Kelly PJ (1984) Comparison of the effects of compression plates and external fixators on early bone-healing. J Bone Joint Surg Am 66:1084–1091

    PubMed  CAS  Google Scholar 

  11. Terjesen T (1984) Bone healing after metal plate fixation and external fixation of the osteotomized rabbit tibia. Acta Orthop Scand 55:69–77

    Article  PubMed  CAS  Google Scholar 

  12. Cheal EJ, Hayes WC, White AA 3rd, Perren SM (1985) Stress analysis of compression plate fixation and its effects on long bone remodeling. J Biomech 18:141–150

    Article  PubMed  CAS  Google Scholar 

  13. Court-Brown CM (1985) The effect of external skeletal fixation on bone healing and bone blood supply. An experimental study. Clin Orthop Relat Res 201:278–289

    PubMed  Google Scholar 

  14. Hart MB, Wu JJ, Chao EY, Kelly PJ (1985) External skeletal fixation of canine tibial osteotomies. Compression compared with no compression. J Bone Joint Surg Am 67:598–605

    PubMed  CAS  Google Scholar 

  15. Holmström T, Paavolainen P, Slätis P, Karaharju E (1986) Effect of compression on fracture healing. Plate fixation studied in rabbits. Acta Orthop Scand 57:368–372

    Article  PubMed  Google Scholar 

  16. De Bastiani G, Aldegheri R, Renzi Brivio L (1986) Dynamic axial fixation. A rational alternative for the external fixation of fractures. Int Orthop 10:95–99

    Article  PubMed  Google Scholar 

  17. Aalto K, Holmström T, Karaharju E, Joukainen J, Paavolainen P, Slätis P (1987) Fracture repair during external fixation. Torsion tests of rabbit osteotomies. Acta Orthop Scand 58:66–70

    Article  PubMed  CAS  Google Scholar 

  18. Kunnamo I (2005) Evidence-based medicine guidelines. Wiley, Chichester

    Book  Google Scholar 

  19. Handoll HH, Parker MJ, Sherrington C (2003) Mobilisation strategies after hip fracture surgery in adults. Cochrane Database Syst Rev 1:CD001704

  20. Skerry TM (2008) The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 473:117–123

    Article  PubMed  CAS  Google Scholar 

  21. Marino AA, Becker RO (1970) Piezoelectric effect and growth control in bone. Nature 228:473–474. doi:10.1038/228473a0

    Article  PubMed  CAS  Google Scholar 

  22. Ciombor DM, Aaron RK (2005) The role of electrical stimulation in bone repair. Foot Ankle Clin 10:579–593

    Article  PubMed  Google Scholar 

  23. Frost HM (2004) A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod 74:3–15

    PubMed  Google Scholar 

  24. Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700

    Article  PubMed  CAS  Google Scholar 

  25. Liedert A, Kaspar D, Augat P, Ignatius A, Claes L (2005) Mechanobiology of bone tissue and bone cells. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in cells and tissues. Academia, Moscow

    Google Scholar 

  26. Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L (2003) Bone adaptation requires oestrogen receptor-alpha. Nature 424:389

    Article  PubMed  CAS  Google Scholar 

  27. Sutherland MK, Hui DU, Rao LG, Wylie JN, Murray TM (1996) Immunohistochemical localization of the estrogen receptor in human osteoblastic SaOS-2 cells: association of receptor levels with alkaline phosphatase activity. Bone 18:361–369

    Article  PubMed  CAS  Google Scholar 

  28. Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, Li J, Maye P, Rowe DW, Duncan RL, Warman ML, Turner CH (2006) The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem 281:23698–23711

    Article  PubMed  CAS  Google Scholar 

  29. Saxon LK, Jackson BF, Sugiyama T, Lanyon LE, Price JS (2011) Analysis of multiple bone responses to graded strains above functional levels, and to disuse, in mice in vivo show that the human Lrp5 G171V high bone mass mutation increases the osteogenic response to loading but that lack of Lrp5 activity reduces it. Bone 49:184–193

    Article  PubMed  CAS  Google Scholar 

  30. Jee WSS (2001) Integrated bone tissue physiology: anatomy and physiology. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC, Boca Raton, pp 1–68

    Google Scholar 

  31. Meyer U, Meyer T, Wiesmann HP (1999) The effect of magnitude and frequency of interfragmentary strain on the tissue response to distraction osteogenesis. J Oral Maxillofac Surg 57:1331–1339

    Article  PubMed  CAS  Google Scholar 

  32. Frost HM, Meyer U, Joos U, Jensen OT (2002) Dental alveolar distraction osteogenesis and the Utah paradigm. In: Jensen OT (ed) Alveolar distraction osteogenesis. Quintessence, Carol Stream, pp 1–16

    Google Scholar 

  33. Fritton SP, Rubin CT (2001) In vivo measurement of bone deformations using strain gauges. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC, Boca Raton, pp 8–34

    Google Scholar 

  34. Rubin CT, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604

    Article  PubMed  CAS  Google Scholar 

  35. Rubin CT, Xu G, Judex S (2001) The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 15:2225–2229

    Article  PubMed  CAS  Google Scholar 

  36. Rubin CT, Turner AS, Müller R, Mittra E, McLeod K, Lin W, Qin YX (2002) Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res 17:349–357

    Article  PubMed  Google Scholar 

  37. Churches AE, Howlett CR, Waldron KJ, Ward GW (1979) The response of living bone to controlled time-varying loading: method and preliminary results. J Biomech 12:35–45

    Article  PubMed  CAS  Google Scholar 

  38. Lanyon LE, Paul IL, Rubin CT, Thrasher EL, DeLaura R, Rose RM, Radin EL (1981) In vivo strain measurements from bone and prosthesis following total hip replacement. An experimental study in sheep. J Bone Joint Surg Am 63:989–1001

    PubMed  CAS  Google Scholar 

  39. Churches AE, Howlett CR (1982) Functional adaptation of bone in response to sinusoidally varying controlled compressive loading of the ovine metacarpus. Clin Orthop Relat Res 168:265–280

    PubMed  Google Scholar 

  40. O’Connor JA, Lanyon LE, MacFie H (1982) The influence of strain rate on adaptive bone remodelling. J Biomech 15:767–781

    Article  PubMed  Google Scholar 

  41. Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402

    PubMed  CAS  Google Scholar 

  42. Lanyon LE, Rubin CT (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17:897–905

    Article  PubMed  CAS  Google Scholar 

  43. Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417

    Article  PubMed  CAS  Google Scholar 

  44. Lanyon LE, Rubin CT, Baust G (1986) Modulation of bone loss during calcium insufficiency by controlled dynamic loading. Calcif Tissue Int 38:209–216

    Article  PubMed  CAS  Google Scholar 

  45. Panjabi MM, White AA 3rd, Wolf JW Jr (1979) A biomechanical comparison of the effects of constant and cyclic compression on fracture healing in rabbit long bones. Acta Orthop Scand 50:653–661

    Article  PubMed  CAS  Google Scholar 

  46. Wolf JW Jr, White AA 3rd, Panjabi MM, Southwick WO (1981) Comparison of cyclic loading versus constant compression in the treatment of long-bone fractures in rabbits. J Bone Joint Surg Am 63:805–810

    PubMed  Google Scholar 

  47. Carter DR (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int 36(Suppl):S19–S24

    Article  PubMed  Google Scholar 

  48. Kempf I, Leung K, Grosse A (2002) Practice of intramedullary locked nails: scientific basis and standard techniques. Springer, Berlin, pp 47–48

    Book  Google Scholar 

  49. Judex S, Rubin CT (2010) Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? J Musculoskelet Neuronal Interact 10:3–11

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaž Mavčič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mavčič, B., Antolič, V. Optimal mechanical environment of the healing bone fracture/osteotomy. International Orthopaedics (SICOT) 36, 689–695 (2012). https://doi.org/10.1007/s00264-012-1487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-012-1487-8

Keywords

Navigation