Skip to main content

Advertisement

Log in

Dermatan sulphate in methoxy polyethylene glycol-polylactide-co-glycolic acid scaffolds upregulates fibronectin gene expression but has no effect on in vivo osteochondral repair

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study was to investigate the effect of dermatan sulphate (DS) addition to biodegradable methoxy polyethylene glycol (MPEG) substituted polylactide-co-glycolic acid (PLGA) scaffolds for cartilage repair in vitro and in vivo.

Methods

Human chondrocytes from eight patients undergoing anterior cruciate ligament reconstruction were isolated and cultured in 5% oxygen on MPEG-PLGA scaffolds ± DS for one, three, seven and 14 days. Analyses were performed using quantitative gene expression analysis for chondrogenic and cell attachment markers. An osteochondral drill hole defect was created in the intertrochlear groove of the distal femur in 20 New Zealand white rabbits (defects n = 20). When bleeding was observed, the defects were treated with MPEG-PLGA scaffolds ± DS. Twelve weeks after surgery the rabbits were sacrificed and the defects were analysed using histological grading with O’Driscoll scoring.

Results

DS addition to MPEG-PLGA scaffolds resulted in a significant upregulation of fibronectin gene expression on day 1. No differences were observed in chondrogenic gene expression. There were no differences between the two groups in histological grading (+DS 10.3 and −DS 9.6).

Conclusions

Upregulation of fibronectin in vitro indicating early cell-scaffold interaction and attachment did not result in improved cartilage repair in an osteochondral defect model in rabbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buckwalter JA, Mankin HJ (1997) Articular cartilage. Part II: degeneration and osteoarthrosis, repair, regeneration, and transplantation. J Bone Joint Surg 79(4):612–632

    Google Scholar 

  2. Bedi A, Feeley BT, Williams RJ 3rd (2010) Management of articular cartilage defects of the knee. J Bone Joint Surg Am 92(4):994–1009

    Article  PubMed  Google Scholar 

  3. Kreuz PC, Steinwachs MR, Erggelet C, Krause SJ, Konrad G, Uhl M, Südkamp N (2006) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 14(11):1119–1125

    Article  PubMed  CAS  Google Scholar 

  4. Mithoefer K, Williams RJ 3rd, Warren RF, Wickiewicz TL, Marx RG (2006) High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 34(9):1413–1418

    Article  PubMed  Google Scholar 

  5. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  PubMed  CAS  Google Scholar 

  6. Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A (2006) A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 13(3):203–210

    Article  PubMed  CAS  Google Scholar 

  7. Piontek T, Ciemniewska-Gorzela K, Szulc A, Naczk J, Slomczykowski M (2011) All-arthroscopic AMIC procedure for repair of cartilage defects of the knee. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-011-1657-z

  8. Lind M, Larsen A, Clausen C, Osther K, Everland H (2008) Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats. Knee Surg Sports Traumatol Arthrosc 16(7):690–698

    Article  PubMed  Google Scholar 

  9. Foldager CB, Nielsen AB, Munir S, Ulrich-Vinther M, Soballe K, Bünger C, Lind M (2011) Combined 3D and hypoxic culture improves cartilage-specific gene expression in human chondrocytes. Acta Orthop 82(2):234–240

    Article  PubMed  Google Scholar 

  10. Knudson CB, Knudson W (2001) Cartilage proteoglycans. Semin Cell Dev Biol 12(2):69–78

    Article  PubMed  CAS  Google Scholar 

  11. Trowbridge JM, Gallo RL (2002) Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 12(9):117R–125R

    Article  PubMed  CAS  Google Scholar 

  12. Hardingham T (2006) Proteoglycans and glycosaminoglycans. In: Seibel MJ, Robins SP, Bilezikian JP (eds) Dynamics of bone and cartilage metabolism. Academic, New York, pp 85–88

  13. Nishikawa H, Mori I, Umemoto J (1985) Influences of sulfated glycosaminoglycans on biosynthesis of hyaluronic acid in rabbit knee synovial membrane. Arch Biochem Biophys 240(1):146–153

    Article  PubMed  CAS  Google Scholar 

  14. Nishikawa H, Mori I, Umemoto J (1988) Glycosaminoglycan polysulfate-induced stimulation of hyaluronic acid synthesis in rabbit knee synovial membrane: involvement of binding protein and calcium ion. Arch Biochem Biophys 266(1):201–209

    Article  PubMed  CAS  Google Scholar 

  15. Munteanu SE, Ilic MZ, Handley CJ (2002) Highly sulfated glycosaminoglycans inhibit aggrecanase degradation of aggrecan by bovine articular cartilage explant cultures. Matrix Biol 21(5):429–440

    Article  PubMed  CAS  Google Scholar 

  16. Uygun BE, Stojsih SE, Matthew HW (2009) Effects of immobilized glycosaminoglycans on the proliferation and differentiation of mesenchymal stem cells. Tissue Eng Part A 15(11):3499–3512

    Article  PubMed  CAS  Google Scholar 

  17. Foldager CB, Munir S, Ulrik-Vinther M, Søballe K, Bünger C, Lind M (2009) Validation of suitable house keeping genes for hypoxia-cultured human chondrocytes. BMC Mol Biol 10(1):94

    Article  PubMed  Google Scholar 

  18. Silver IA (1975) Measurement of pH and ionic composition of pericellular sites. Philos Trans R Soc Lond B Biol Sci 271(912):261–272

    Article  PubMed  CAS  Google Scholar 

  19. Zhou S, Cui Z, Urban JP (2004) Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study. Arthritis Rheum 50(12):3915–3924

    Article  PubMed  Google Scholar 

  20. O’Driscoll SW, Keeley FW, Salter RB (1988) Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg Am 70(4):595–606

    PubMed  Google Scholar 

  21. Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115(Pt 20):3861–3863

    Article  PubMed  CAS  Google Scholar 

  22. Miyamoto S, Katz BZ, Lafrenie RM, Yamada KM (1998) Fibronectin and integrins in cell adhesion, signaling, and morphogenesis. Ann N Y Acad Sci 857:119–129

    Article  PubMed  CAS  Google Scholar 

  23. Romberger DJ (1997) Fibronectin. Int J Biochem Cell Biol 29(7):939–943

    Article  PubMed  CAS  Google Scholar 

  24. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238(4826):491–497

    Article  PubMed  CAS  Google Scholar 

  25. Safran MR, Seiber K (2010) The evidence for surgical repair of articular cartilage in the knee. J Am Acad Orthop Surg 18(5):259–266

    PubMed  Google Scholar 

  26. Ashraf S, Walsh DA (2008) Angiogenesis in osteoarthritis. Curr Opin Rheumatol 20(5):573–580

    Article  PubMed  Google Scholar 

  27. Domm C, Schünke M, Christesen K, Kurz B (2002) Redifferentiation of dedifferentiated bovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthritis Cartilage 10(1):13–22

    Article  PubMed  CAS  Google Scholar 

  28. Robins JC, Akeno N, Mukherjee A, Dalal RR, Aronow BJ, Koopman P, Clemens TL (2005) Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone 37(3):313–322

    Article  PubMed  CAS  Google Scholar 

  29. Khan WS, Johnson DS, Hardingham TE (2010) The potential of stem cells in the treatment of knee cartilage defects. Knee 17(6):369–374

    Article  PubMed  Google Scholar 

  30. Harris JD, Siston RA, Pan X, Flanigan DC (2010) Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am 92(12):2220–2233

    Article  PubMed  Google Scholar 

  31. Guilak F (2000) The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage. Biorheology 37(1–2):27–44

    PubMed  CAS  Google Scholar 

  32. Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS (2001) Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev 15(21):2865–2876

    PubMed  CAS  Google Scholar 

  33. Christensen BB, Foldager CB, Hansen OM, Kristiansen AA, Le DQ, Nielsen AD, Nygaard JV, Bünger CE, Lind M (2011) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-011-1692-9

  34. Jeng L, Olsen BR, Spector M (2010) Engineering endostatin-producing cartilaginous constructs for cartilage repair using nonviral transfection of chondrocyte-seeded and mesenchymal-stem-cell-seeded collagen scaffolds. Tissue Eng Part A 16(10):3011–3021

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Danish National Advanced Technology Research Foundation financially supported the project. Coloplast A/S provided an unconditional supply of ASEED™ and dermatan sulphate-coated scaffolds. The authors would like to thank the laboratory technicians at the Orthopaedic Research Laboratory, Aarhus University Hospital, Denmark and the Institute for Clinical Medicine, Aarhus University Hospital, Skejby, Denmark for their help and cooperation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casper Bindzus Foldager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foldager, C.B., Bünger, C., Nielsen, A.B. et al. Dermatan sulphate in methoxy polyethylene glycol-polylactide-co-glycolic acid scaffolds upregulates fibronectin gene expression but has no effect on in vivo osteochondral repair. International Orthopaedics (SICOT) 36, 1507–1513 (2012). https://doi.org/10.1007/s00264-011-1479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-011-1479-0

Keywords

Navigation