Skip to main content

Advertisement

Log in

The role of stem cells in fracture healing and nonunion

  • Review Article
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Nonunion and large bone defects present a therapeutic challenge to the surgeon and are often associated with significant morbidity. These defects are expensive to both the health care system and society. However, several surgical procedures have been developed to maximise patient satisfaction and minimise health-care-associated and socioeconomic costs. Integrating recent evidence into the diamond concept leads to one simple conclusion that not only provides us with answers to the “open questions” but also simplifies our entire understanding of bone healing. It has been shown that a combination of neo-osteogenesis and neovascularisation will restore tissue deficits, and that the optimal approach includes a biomaterial scaffold, cell biology techniques, a growth factor and optimisation of the mechanical environment. Further prospective, controlled, randomised clinical studies will determine the effectiveness and economic benefits of treatment with mesenchymal stem cells, not in comparison to other conventional surgical approaches but in direct conjunction with them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bajada S, Harrison PE, Ashton BA, Cassar-Pullicino VN, Ashammakhi N, Richardson JB (2007) Successful treatment of refractory tibial nonunion using calcium sulphate and bone marrow stromal cell implantation. J Bone Joint Surg Br 89(10):1382–1386

    Article  PubMed  CAS  Google Scholar 

  2. Bosse MJ, MacKenzie EJ, Kellam JF (2001) A prospective evaluation of the clinical utility of the lower-extremity injury-severity scores. J Bone Joint Surg Am 83-A(1):3–14

    PubMed  CAS  Google Scholar 

  3. Brandi ML, Collin-Osdoby P (2005) Vascular biology and the skeleton. J Bone Miner Res 21(2):183–192

    Article  PubMed  Google Scholar 

  4. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    Article  PubMed  CAS  Google Scholar 

  5. Cohnheim J (1867) Arch Path Anat Physiol Klin Med 40:1

    Article  Google Scholar 

  6. Connolly JF (1998) Clinical use of marrow osteoprogenitor cells to stimulate osteogenesis. Clin Orthop Relat Res 355:S257–S266

    Article  PubMed  Google Scholar 

  7. Connolly JF, Shindell R (1986) Percutaneous marrow injection for an ununited tibia. The Nebraska Medical Journal 71(4):105–107

    PubMed  CAS  Google Scholar 

  8. Cuomo AV, Virk M, Petrigliano F, Morgan EF, Lieberman JR (2009) Mesenchymal stem cell concentration and bone repair: potential pitfalls from bench to bedside. J Bone Joint Surg Am 91(5):1073–1083

    Article  PubMed  Google Scholar 

  9. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Dj P, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  PubMed  CAS  Google Scholar 

  10. Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S (2005) Circulating Osteoblast lineage cells in humans. N England J Med 12;352(19):1959–1966

    Google Scholar 

  11. Eriksen EF, Eghbali-Fatourechi GZ, Khosla S (2007) Remodeling and vascular spaces in bone. J Bone Miner Res 22:1–6

    Article  PubMed  CAS  Google Scholar 

  12. Fayaz HC, Yaremchuk M, Jupiter J (2010) Reconstruction of a traumatic transmetatarsal amputation with use of a latissimus dorsi free tissue transfer and the Ilizarov technique: a case report. J Bone Joint Surg Am 92(2):459–464

    Article  PubMed  Google Scholar 

  13. Funk JF, Matziolis G, Krocker D, Perka C (2007) Promotion of bone healing through clinical application of autologous periosteum derived stem cells in a case of atrophic non-union. Z Orthop Unfall 145(6):790–794

    Article  PubMed  CAS  Google Scholar 

  14. Garg NK, Gaur S, Sharma S (1993) Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture. Acta Orthopaedica Scandinavica 64(6):671–672

    Article  PubMed  CAS  Google Scholar 

  15. Giannoudis PV, Tzioupis C, Green J (2009) Surgical techniques: how I do it? The Reamer/Irrigator/Aspirator (RIA) system. Injury 40(11):1231–1236

    Article  PubMed  CAS  Google Scholar 

  16. Giannoudis PV, Einhorn TA, Marsh D (2007) Injury, Int J Care Injured 38S4:S3–S6

    Google Scholar 

  17. Giotakis N, Narayan B, Nayagam S (2007) Distraction osteogenesis and nonunion of the docking site: is there an ideal treatment option? Injury 38:S100e7

    Article  Google Scholar 

  18. Goel A, Sangwan SS, Siwach RC, Ali AM (2005) Percutaneous bone marrow grafting for the treatment of tibial non-union. Injury 36(1):203–206

    Article  PubMed  Google Scholar 

  19. Gugala Z, Gogolewski S (1999) Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study. J Orthop Trauma 13:187–195

    Article  PubMed  CAS  Google Scholar 

  20. Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F (2001) Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16:1575–1582

    Article  PubMed  CAS  Google Scholar 

  21. Healey JH, Zimmerman PA, McDonnell JM, Lane JM (1990) Percutaneous bone marrow grafting of delayed union and nonunion in cancer patients. Clin Orthop Relat Res 256:280–285

    PubMed  Google Scholar 

  22. Hernigou PH, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions: influence of the number and concentration of progenitor cells, Journal of Bone and Joint Surgery A 87(7):1430–1437

    Article  Google Scholar 

  23. Honczarenko M, Le Y, Swierkowski M et al (2006) Human bone morrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24(4):1030–1041

    Article  PubMed  CAS  Google Scholar 

  24. Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1995) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313

    Article  Google Scholar 

  25. Ivkovic A, Marijanovic I, Hudetz D, Porter RM, Pecina M, Evans CH (2011) Regenerative medicine and tissue engineering in orthopaedic surgery. Front Biosci (Elite ed)1;3:923–944

    Google Scholar 

  26. Iwakura T, Miwa M, Sakai Y, Niikura T, Lee SY, Oe K, Hasegawa T, Kuroda R, Fujioka H, Doita M, Kurosaka M (2009) Human hypertrophic nonunion tissue contains mesenchymal progenitor cells with multilineage capacity in vitro. J Orthop Res 27(2):208–215

    Article  PubMed  CAS  Google Scholar 

  27. Keating JF, Simpson AH, Robinson CM (2005) The management of fractures with bone loss. J Bone Joint Surg Br 87:142–150

    Article  PubMed  CAS  Google Scholar 

  28. Kim SJ, Shin YW, Yang KH et al (2009) A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast (Ossron) injection to treat fractures. BMC Musculoskeletal Disorders article 20

  29. Kitoh H, Kawasumi M, Kaneko H, Ishiguro N (2009) Differential Effects of Culture-expanded Bone Marrow Cells on the Regeneration of Bone Between the Femoral and the Tibial Lengthenings. J Pediatr Orthop 29:643–649

    Article  PubMed  Google Scholar 

  30. Lin CH, Wei FC, Chen HC, Chuang DC (1999) Outcome comparison in traumatic lower-extremity reconstruction by using various composite vascularized bone transplantation. Plast Reconstr Surg 104:984–992

    Article  PubMed  CAS  Google Scholar 

  31. Lindsey RW, Gugala Z, Milne E, Sun M, Gannon FH, Latta LL (2006) The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect. J Orthop Res 24(7):1438–1453

    Article  PubMed  CAS  Google Scholar 

  32. Liu ZJ, Zhuge Y, Velazquez OC (2009) Trafficking and differentiation of mesenchymal stem cells. JCell Bochem 106(6):984–991

    Article  CAS  Google Scholar 

  33. Maes C, Kobayashi T, Selig MK et al (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19:329–344

    Article  PubMed  CAS  Google Scholar 

  34. Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5):947–955

    Article  PubMed  CAS  Google Scholar 

  35. Masquelet AC, Fitoussi F, Begue T, Muller GP (2000) Reconstruction of the long bones by the induced membrane and spongy autograft [in French]. Ann Chir Plast Esthet 45:346–353

    PubMed  CAS  Google Scholar 

  36. Masquelet AC (2003) Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbecks Arch Surg 388:344–346

    Article  PubMed  CAS  Google Scholar 

  37. Megas P (2005) Classification of non-union. Injury 36(SuppI4):S30–S37

    PubMed  Google Scholar 

  38. Miller MA, Ivkovic A, Porter R, Harris MB, Estok DM, Smith RM, Evans CH, Vrahas MS (2011) Autologous bone grafting on steroids: preliminary clinical results. A novel treatment for nonunions and segmental bone defects. Int Orthop Apr 35(4):599–605

    Article  Google Scholar 

  39. Mödder UI, Khosla S (2008) Skeletal stem/osteoprogenitor cells: current concepts, alternate hypotheses, and relationship to the bone remodeling compartment. J Cell Biochem 1 103(2):393–400

    Google Scholar 

  40. Novicoff WM, Manaswi A, Hogan MV, Brubaker SM, Mihalko WM, Saleh KJ (2008) Critical analysis of the evidence for current technologies in bone-healing and repair. Journal of Bone and Joint Surgery A 90(1):85–91

    Article  Google Scholar 

  41. Pecina M, Vukicevic S (2007) Biological aspects of bone, cartilage and tendon regeneration. Int Orthop 31(6):719–720

    Article  PubMed  Google Scholar 

  42. Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J (2004) Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 22(1):73–79

    Article  PubMed  CAS  Google Scholar 

  43. Pountos I, Giannoudis PV (2005) Biology of mesenchymal stem cells. Injury 36(Suppl 3):S8–S12

    Article  PubMed  Google Scholar 

  44. Ripamonti U (1992) Calvarial reconstruction in baboons with porous hydroxyapatite. J Craniofac Surg 3(3):149–159

    Article  PubMed  CAS  Google Scholar 

  45. Ripamonti U (1993) Delivery systems for bone morphogenetic proteins. A summary of experimental studies in primate models. Ann Chir Gynaecol Suppl 207:13–24

    PubMed  CAS  Google Scholar 

  46. Russell AT, Taylor CJ, Lavelle DG (1991) Fractures of tibia and fibula. In: Bucholz RW, Heckman JD, Court-Brown CM (eds) Fractures in Adults, Rockwood and Green, vol 3. pp 1915–1982

  47. Sambrook PN, Chen CJS, March LM et al (2006) High bone turnover is an independent predictor of mortality in the frail elderly. J Bone Miner Res 21:549–555

    Article  PubMed  Google Scholar 

  48. Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Rel Res 205:299–308

    Google Scholar 

  49. Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 1; 344(5):385–386

    Google Scholar 

  50. Taylor CJ (1992) Delayed union and nonunion of fractures. In: Crenshaw AH (ed) Campbell’s Operative Orthopaedics, vol 28. Mosby, pp 1287—1345

  51. Towler DA (2008) The osteogenic-angiogenic interface: novel insights into the biology of bone formation and fracture repair. Curr Osteoporos Rep 6(2):67–71

    Article  PubMed  Google Scholar 

  52. Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger (2001) Replacement of an avulsed phalanx with tissue engineered bone. N England J Med 344(20)

  53. Yefang Z, Hutmacher DW, Varawan SL, Meng LT (2007) Comparison of human alveolar osteoblasts cultured on polymer-ceramic composite scaffolds and tissue culture plates. Int J Oral Maxillofac Surg 36:137–145

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter V. Giannoudis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fayaz, H.C., Giannoudis, P.V., Vrahas, M.S. et al. The role of stem cells in fracture healing and nonunion. International Orthopaedics (SICOT) 35, 1587–1597 (2011). https://doi.org/10.1007/s00264-011-1338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-011-1338-z

Keywords

Navigation